Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björkbacka, Åsa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Jonsson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Radiation induced corrosion of copper for spent nuclear fuel storage2013In: Radiation Physics and Chemistry, ISSN 0969-806X, E-ISSN 1879-0895, Vol. 92, p. 80-86Article in journal (Refereed)
    Abstract [en]

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  • 2.
    Björkbacka, Åsa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. Show more KTH Royal Inst Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden..
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. Show more KTH Royal Inst Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden..
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. Show more KTH Royal Inst Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden..
    Jonsson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. Show more KTH Royal Inst Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden..
    Radiation Induced Corrosion of Copper in Anoxic Aqueous Solution2012In: Electrochemical and solid-state letters, ISSN 1099-0062, E-ISSN 1944-8775, Vol. 15, no 5, p. C5-C7Article in journal (Refereed)
    Abstract [en]

    The effect of gamma radiation on corrosion of copper under anoxic conditions in pure water has been studied experimentally. Copper samples submerged in water were exposed to dose rates of 0.37 or 0.77 kGy/h. Reference samples were used throughout. The copper surfaces have been examined using the techniques of SEM-EDS, IRAS, CR spectroscopy and AFM. Dissolution of copper was measured using ICP-OES. The results show that irradiated samples are more corroded than corresponding reference samples. This is also reflected by the increased concentration of copper in water after irradiation. Surface examination also reveals local corrosion features.

  • 3.
    Forslund, Mattias
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Zhang, Fan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Claesson, Per
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    The atmospheric corrosion inhibition of octadecanethiol adsorbed on two brass alloys exposed to humidified air with formic acidManuscript (preprint) (Other academic)
    Abstract [en]

    Self-assembled monolayers of octadecanethiol (ODT) have previously shown to provide excellent corrosion inhibition on copper exposed to humidified air containing formic acid - mimicking indoor atmospheric corrosion. ODT layers are, however, much less efficient corrosion inhibitors for zinc. In this work we elucidate the possibility of using ODT monolayers to inhibit corrosion of brass. We find that ODT provides equally good corrosion inhibition of single-phase Cu20Zn as of pure copper, retarding the transport of corrosion stimulators to the brass surface. On double-phase Cu40Zn, however, local galvanic effects lead to less efficient corrosion inhibition and more corrosion products than on Cu20Zn.

  • 4.
    Ghalgaoui, Ahmed
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Shimizu, Ryosuke
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Alvarez-Asencio, Rubén
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    McKee, Clayton
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Monolayer Study by VSFS: In Situ Response to Compression and Shear in a Contact2014In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, no 11, p. 3075-3085Article in journal (Refereed)
    Abstract [en]

    Self-assembled octadecyltrichlorosilane ((OTS), CH3(CH2)(17)SiCl3) layers on hydroxyl-terminated silicon oxide (SiO2) were prepared. The monolayers were characterized with atomic force microscopy (AFM) and contact angle measurements; their conformation was studied before, during, and after contact with a polymer (either PDMS or PTFE) surface using the vibrational sum frequency spectroscopy (VSFS) technique. During contact, the effect of pressure was studied for both polymer surfaces, but in the case of PTFE, the effect of shear rate on the contact was simultaneously studied. The VSFS response of the monolayers with pressure was almost entirely due to changes in the real area of contact with the polymer and therefore the Fresnel factors, whereas sliding caused disorder in the previously all-trans monolayer, as evidenced by a significant increase in the population of gauche defects.

  • 5.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Molecular studies of initial atmospheric corrosion of copper: Exploration of ultra-sensitive techniques for the inhibiting effect of self assembled monolayers, and the effect of gamma radiation2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Atmospheric corrosion indoors is of great practical importance for the degradation of metals, for example in electronics, military equipment, and cultural heritage items. It involves a wide range of chemical, electrochemical, and physical processes occurring in gas, liquid, and solid phases, and at the interfaces between them. Hence, a molecular understanding of the fundamental interactions during atmospheric corrosion is of utmost importance.

    Copper is one of the most used metals in electrical contacts, power generators, heat exchangers, etc. and is prone to indoor atmospheric corrosion. Although corrosion and oxidation of copper in the presence of corrosion stimulators is thermodynamically inevitable, there are ways to reduce the kinetics of corrosion and oxidation reactions.

    Self assembled monolayers (SAMs) of organic molecules, when adsorbed on copper surfaces, have proven to be efficient barriers against copper corrosion. However, understanding at the molecular level of the initial stages of corrosion of SAM covered copper in atmospheric corrosion conditions is lacking. The main reason is the inability of the conventional analytical methods to detect and characterize very thin corrosion products formed during the initial stages (from seconds to days) of atmospheric corrosion of SAM covered copper. To overcome this situation a highly surface sensitive technique, vibrational sum frequency spectroscopy (VSFS), has been utilized in situ and ex situ in this thesis to detect and follow the oxidation of alkanethiol SAM covered copper in dry air as well as to assess the conformational changes of SAM molecules during oxidation.  A very sensitive gravimetric method, quartz crystal microbalance with dissipation monitoring (QCM-D), and a highly sensitive and versatile optical technique, nanoplasmonic sensing (NPS), were combined in situ with VSFS to quantify this very slow oxidation process. This combination allowed the heterogeneity of the oxidation process as well as the mass and the rigidity of the corrosion products to be detected simultaneously.

    To address indoor atmospheric corrosion conditions where carboxylic acids play an important role we next studied the interaction between SAM covered copper and humidified air, to which formic acid was added. The in situ identification of the corrosion products and their formation kinetics was done using near surface sensitive infrared reflection/absorption spectroscopy (IRAS), and the effect of hydrocarbon chain length in alkanethiol SAMs on their corrosion protection efficiency was investigated. The effect of the anchoring group in the SAMs on their corrosion protection efficiency was studied for hexaneselenol using -SeH as the anchoring group, and the results were compared with its thiol counterpart, hexanethiol, with -SH as the anchoring group. Complementary in situ and ex situ VSFS measurements were performed to assess the quality of the SAMs before, during, and after exposure.

    It was shown that the SAMs of alkanethiols greatly inhibited the formation of copper (I) oxide and slowed down the formation of other corrosion products, i.e. copper formate and copper hydroxid. This was due to a selective hindrance of the corrosion stimulators, oxygen, water, and formic acid molecules reaching the copper-SAM interface. The corrosion inhibiting effect increased with the hydrocarbon chain length. The SAMs of hexaneselenols, on the other hand, exhibited an accelerated formation of copper (I) oxide, copper formate and copper hydroxide compared to an unprotected surface as a result of the partial removal of hexaneselenol molecules from the copper surface during prolonged exposure.

    The experience gained in characterizing and quantifying thin copper oxides was further used to explore the influence of gamma (γ) radiation on copper corrosion in anoxic water. This multi-analytical approach included IRAS, cathodic reduction, confocal Raman microscope, atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and inductively coupled plasma - atomic emission spectroscopy. The results clearly showed that copper dissolution as well as the oxide layer thickness increase with gamma radiation under the exposure conditions.

  • 6.
    Hosseinpour, Saman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Forslund, Mattias
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Atmospheric corrosion of Cu, Zn, and Cu-Zn alloys protected by self-assembled monolayers of alkanethiols2016In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 648, p. 170-176Article in journal (Refereed)
    Abstract [en]

    In this article results from earlier studies have been compiled in order to compare the protection efficiency of self-assembled monolayers (SAM) of alkanethiols for copper, zinc, and copper-zinc alloys exposed to accelerated indoor atmospheric corrosion conditions. The results are based on a combination of surface spectroscopy and microscopy techniques. The protection efficiency of investigated SAMs increases with chain length which is attributed to transport hindrance of the corrosion stimulators in the atmospheric environment, water, oxygen and formic acid, towards the copper surface. The transport hindrance is selective and results in different corrosion products on bare and on protected copper. Initially the molecular structure of SAMs on copper is well ordered, but the ordering is reduced with exposure time. Octadecanethiol (ODT), the longest alkanethiol investigated, protects copper significantly better than zinc, which may be attributed to the higher bond strength of Cu-S than of Zn-S. Despite these differences, the corrosion protection efficiency of ODT for the single phase Cu20Zn brass alloy is equally efficient as for copper, but significantly less for the heterogeneous double phase Cu40Zn brass alloy.

  • 7.
    Hosseinpour, Saman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Götelid, Mats
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Self-Assembled Monolayers as Inhibitors for the Atmospheric Corrosion of Copper Induced by Formic Acid: A Comparison between Hexanethiol and Hexaneselenol2014In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 161, no 1, p. C50-C56Article in journal (Refereed)
    Abstract [en]

    The corrosion protection by self-assembled monolayers (SAMs) of hexanethiol and hexaneselenol has been explored on copper exposed to humid air containing formic acid, a corrosive environment relevant for indoor atmospheric corrosion. The kinetics of the formation of corrosion products on SAM covered copper was followed using in-situ infrared reflection/absorption spectroscopy (IRAS) and compared with that of bare copper. Both SAMs initially showed a corrosion protection ability. The prolonged exposure of hexanethiol copper resulted in a reduced formation rate of copper formate and copper hydroxide compared to bare copper, while on bare and hexaneselenol covered samples copper (I) oxide, copper formate, and copper hydroxide were observed. To assess the quality of the SAMs during the sample exposure, vibrational sum frequency spectroscopy (VSFS) was used. It was found that hexaneselenol molecules are locally removed from the surface during corrosion in contrast to their thiol counterparts. This created localized galvanic effects which resulted in an accelerated corrosion of selenol covered copper. X-ray photoelectron spectroscopy at elevated pressure demonstrated that the hexanethiol removed thin oxide layers upon adsorption. A contributing parameter to the enhanced corrosion inhibiting ability of hexanethiol could be its greater ability than hexaneselenol to bind to the copper surface during its deposition and sample exposure.

  • 8.
    Hosseinpour, Saman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Hedberg, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Baldelli, Steven
    Dpt of Chemistry, University of Houston, Texas, US.
    Initial Oxidation of Alkanethiol-Covered Copper Studied by Vibrational Sum Frequency Spectroscopy2011In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 48, p. 23871-23879Article in journal (Refereed)
    Abstract [en]

    The oxidation of octadecanethiol (ODT, CH3-(CH2)17SH)-covered copper in dry air has been studied by in situ vibrational sum frequency spectroscopy (VSFS), infrared reflection absorption spectroscopy (IRAS), and cathodic reduction (CR). During the first 10 h of exposure, the VSF spectral line shape in the CH stretching region changed

    significantly, with resonances observed as dips being transformed into peaks. This was attributed to a phase change in the nonresonant sum frequency signal due to the formation of a thin layer of copper(I) oxide beneath the ODT. Complementary cathodic reduction and infrared reflection/absorption spectroscopy studies yielded a thickness of the oxide layer of <2 nm after 19 h exposure. An orientation analysis on the adsorbed molecules by VSFS indicated a decreased tilt angle of the terminating methyl groups with respect to the surface normal during the formation of the oxide layer.

  • 9.
    Hosseinpour, Saman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Alkanethiols as inhibitors for the atmospheric corrosion of copper induced by formic acid: Effect of chain length2013In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 160, no 6, p. C270-C276Article in journal (Refereed)
    Abstract [en]

    Self assembled monolayers (SAMs) of n-alkanethiols of different chain length (4, 6, 8, 12, and 18 carbons in the chain) have been explored as corrosion inhibitors for copper exposed to humidified air containing formic acid, an environment used to mimic accelerated indoor atmospheric corrosion. Near-surface sensitive in-situ infrared reflection/absorption spectroscopy combined with interface sensitive vibrational sum frequency spectroscopy revealed unique molecular information on the role of each SAM during ongoing corrosion. All SAMs protect copper against corrosion, and this ability increases continuously with chain length. Their structural order is high prior to exposure, but an increased disorder is observed as a result of the corrosion process. The protection ability of the SAMs is attributed to a selective hindrance of the corrosion stimulators water, oxygen gas, and formic acid to reach the copper-SAM interface through each SAM, which results in different corrosion mechanisms on SAM protected copper and unprotected copper. This significantly retards the formation of the corrosion products copper hydroxide and copper formate, and results in essentially no formation of cuprite.

  • 10.
    Hosseinpour, Saman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Schwind, Markus
    Kasemo, Bengt
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Integration of Quartz Crystal Microbalance with Vibrational Sum Frequency Spectroscopy-Quantification of the Initial Oxidation of Alkanethiol-Covered Copper2012In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 46, p. 24549-24557Article in journal (Refereed)
    Abstract [en]

    We report the first integration of the interface sensitive technique vibrational sum frequency spectroscopy (VSFS) and the mass sensitive technique quartz crystal microbalance (QCM). VSFS-QCM has been applied in-situ to follow the formation of a thin Cu2O-like oxide on octadecanethiol-covered copper in dry air at ambient pressure conditions. We observed significant changes and an evolution of the VSF spectra caused by alterations in the electronic properties of the metal surface, and simultaneous shifts in the QCM resonance frequency due to a mass change during the formation of the oxide. QCM and VSFS exhibit a resolution corresponding to the formation of around 2% and 5% of an ideal monolayer of Cu2O, respectively. The successful integration of QCM increases the versatility of VSFS in numerous applications, where simultaneous in situ mass and spectroscopic information is desirable.

  • 11.
    Johnson, C. Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    In-situ studies of the reactivity of copper surfaces protected by self-assembled monolayers2014In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 248Article in journal (Other academic)
  • 12. Schwind, Markus
    et al.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Langhammer, Christoph
    Zoric, Igor
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Kasemo, Bengt
    Combined in Situ Quartz Crystal Microbalance with Dissipation Monitoring, Indirect Nanoplasmonic Sensing, and Vibrational Sum Frequency Spectroscopic Monitoring of Alkanethiol-Protected Copper Corrosion2013In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 29, no 23, p. 7151-7161Article in journal (Refereed)
    Abstract [en]

    In this study, we have applied three techniques to simultaneously and in situ study the initial stage of corrosion of copper protected by a self-assembled monolayer of octadecanethiol (ODT). We combined quartz crystal microbalance with dissipation monitoring (QCM-D), indirect nanoplasmonic sensing (INPS), and vibrational sum frequency spectroscopy (VSFS) and obtained complementary information about mass uptake and optical and spectroscopic changes taking place during the initial corrosion phase. All three techniques are very sensitive to the formation of a corrosion film (thickness in the range 0-0.41 nm) under mildly corrosive conditions (dry air, <0.5% relative humidity). The three techniques yield information about the viscoelasticity of the corrosion film (QCM-D), the homogeneity of the corrosion reaction on the surface (INPS), and the stability of the ODT. protection layer (VSFS). Furthermore, by also studying the corrosion process in humid air (ca. 70% relative humidity), we illustrate how the combination of these techniques can be used to differentiate between simultaneously occurring processes, such as water adsorption and corrosion product formation.

  • 13. Schwind, Markus
    et al.
    Hosseinpour, Saman
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Langhammer, Christoph
    Zoric, Igor
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Kasemo, Bengt
    Nanoplasmonic Sensing for Monitoring the Initial Stages of Atmospheric Corrosion of Cu Nanodisks and Thin Films2013In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 160, no 10, p. C487-C492Article in journal (Refereed)
    Abstract [en]

    Nanoplasmonic sensing as a powerful experimental technique for corrosion kinetics monitoring is demonstrated. Its versatility is illustrated by studies of initial corrosion carried out on model systems consisting of copper nanodisks and extended copper films in both dry (<0.5% relative humidity, RH) and humid (65 +/- 5% RH) air. Samples with and without a protective self-assembled monolayer of octadecanethiol (ODT) were studied. Thus, we studied four different corrosion situations. Two versions of the technique were employed, direct and indirect nanoplasmonic sensing (INPS). The former used disk-shaped nanoparticles as both sample structures and sensing particles, the latter used extended films as the sample, with the nanoplasmonic sensing particles embedded under the sample. Corrosion kinetics were recorded with high sensitivity and high temporal resolution (submonolayer detection limit; temporal resolution 1-2 seconds). In dry air, six times lower oxidation rates were observed for ODT-covered Cu compared to bare Cu, demonstrating the protection efficiency of the ODT as a corrosion inhibitor. In humid air, a higher oxidation rate was measured for both bare (2.4 times higher) and ODT-covered (1.7 times higher) samples, compared to the same samples exposed to the dry air environment. Oxidation occurred first after a short induction period during which water was adsorbed. For the Cu nanodisks (direct sensing) and Cu films (indirect sensing) studied here, very similar oxidation kinetics were observed.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf