Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Delekta, Szymon Sollami
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik.
    Adolfsson, Karin H.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Benyahia Erdal, Nejla
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymerteknologi.
    Östling, Mikael
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik.
    Li, Jiantong
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik.
    Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte2019Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 21, s. 10172-10177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The advance of miniaturized and low-power electronics has a striking impact on the development of energy storage devices with constantly tougher constraints in terms of form factor and performance. Microsupercapacitors (MSCs) are considered a potential solution to this problem, thanks to their compact device structure. Great efforts have been made to maximize their performance with new materials like graphene and to minimize their production cost with scalable fabrication processes. In this regard, we developed a full inkjet printing process for the production of all-graphene microsupercapacitors with electrodes based on electrochemically exfoliated graphene and an ultrathin solid-state electrolyte based on nano-graphene oxide. The devices exploit the high ionic conductivity of nano-graphene oxide coupled with the high electrical conductivity of graphene films, yielding areal capacitances of up to 313 mu F cm-2 at 5 mV s-1 and high power densities of up to 4 mW cm-3 with an overall device thickness of only 1 mu m.

  • 2.
    Delekta, Szymon Sollami
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS).
    Laurila, M. -M
    Mäntysalo, M.
    Li, Jiantong
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elektronik och inbyggda system.
    Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors2020Ingår i: Nano-Micro Letters, ISSN 2311-6706, Vol. 12, nr 1, artikel-id 40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Scalable fabrication of high-rate micro-supercapacitors (MSCs) is highly desired for on-chip integration of energy storage components. By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion, a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure. The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes. During multiple-pass printing, the porous microstructure effectively absorbs the successively printed inks, allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors, electrodes, and sold-state electrolytes. The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density, evidently outperforming the MSCs fabricated through general printing techniques.[Figure not available: see fulltext.].

  • 3.
    Delekta, Szymon Sollami
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS).
    Laurila, Mika-Matti
    Tampere Univ, Fac Informat Technol & Commun Sci, Lab Future Elect, Tampere 33720, Finland..
    Mantysalo, Matti
    Tampere Univ, Fac Informat Technol & Commun Sci, Lab Future Elect, Tampere 33720, Finland..
    Li, Jiantong
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elektronik och inbyggda system.
    Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors2020Ingår i: NANO-MICRO LETTERS, ISSN 2311-6706, Vol. 12, nr 1, artikel-id 40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Scalable fabrication of high-rate micro-supercapacitors (MSCs) is highly desired for on-chip integration of energy storage components. By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion, a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure. The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes. During multiple-pass printing, the porous microstructure effectively absorbs the successively printed inks, allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors, electrodes, and sold-state electrolytes. The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density, evidently outperforming the MSCs fabricated through general printing techniques.

  • 4.
    Delekta, Szymon Sollami
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Smith, Anderson David
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik.
    Li, Jiantong
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Östling, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Inkjet printed highly transparent and flexible graphene micro-supercapacitors2017Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, nr 21, s. 6998-7005Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Modern energy storage devices for portable and wearable technologies must fulfill a number of requirements, such as small size, flexibility, thinness, reliability, transparency, manufacturing simplicity and performance, in order to be competitive in an ever expanding market. To this end, a comprehensive inkjet printing process is developed for the scalable and low-cost fabrication of transparent and flexible micro-supercapacitors. These solid-state devices, with printed thin films of graphene flakes as interdigitated electrodes, exhibit excellent performance versus transparency (ranging from a single-electrode areal capacitance of 16 mu F cm(-2) at transmittance of 90% to a capacitance of 99 mu F cm(-2) at transmittance of 71%). Also, transparent and flexible devices are fabricated, showing negligible capacitance degradation during bending. The ease of manufacturing coupled with their great capacitive properties opens up new potential applications for energy storage devices ranging from portable solar cells to wearable sensors.

  • 5.
    Delekta, Szymon Sollami
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.
    Östling, Mikael
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.
    Li, Jiantong
    KTH, Skolan för elektroteknik och datavetenskap (EECS).
    Wet Transfer of Inkjet Printed Graphene for Microsupercapacitors on Arbitrary Substrates2019Ingår i: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 2, nr 1, s. 158-163Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Significant research interest is being devoted to exploiting the properties of graphene but the difficult integration on various substrates limits its use. In this regard, we developed a transfer technique that allows the direct deposition of inkjet printed graphene devices on arbitrary substrates, even 3D objects and living plants. With this technique, we fabricated micro-supercapacitors, which exhibited good adhesion on almost all substrates and no performance degradation induced by the process. Specifically, the microsupercapacitor on an orchid leaf showed an areal capacitance as high as 441 mu F cm(-2) and a volumetric capacitance of 1.16 F cm(-3). This technique can boost the use of graphene in key technological applications, such as self powered epidermal electronics and environmental monitoring systems.

  • 6.
    Li, Jiantong
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Delekta, Szymon Sollami
    Zhang, Panpan
    Yang, Sheng
    Lohe, Martin R.
    Zhuang, Xiaodong
    Feng, Xinliang
    Östling, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik.
    Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing2017Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 11, nr 8, s. 8249-8256Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A simple full-inkjet-printing technique is developed for the scalable fabrication of graphene-based microsupercapacitors (MSCs) on various substrates. High-performance graphene inks are formulated by integrating the electrochemically exfoliated graphene with a solvent exchange technique to reliably print graphene interdigitated electrodes with tunable geometry and "thickness. Along with the printed polyelectrolyte, poly(4-styrenesulfonic acid), the fully printed graphene-based MSCs attain the highest areal capacitance of similar to 0.7 mF/cm(2), substantially advancing the state-of-art of all-solid-state MSCs with printed graphene electrodes. The full printing solution enables scalable fabrication of MSCs and effective connection of them in parallel and/or in series at various scales. Remarkably, more than 100 devices have been connected to form large-scale MSC arrays as power banks on both silicon wafers and Kapton. Without any extra protection or encapsulation, the MSC arrays can be reliably charged up to 12 V and retain the performance even 8 months after fabrication.

  • 7.
    Loiko, Pavel
    et al.
    ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia..
    Maria Serres, Josep
    URV, Dept Quim Fis & Inorgan, Fis & Cristal Lografia Mat & Nanomat FiCMA FiCNA, EMaS, E-43007 Tarragona, Spain..
    Delekta, Szymon Sollami
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Kifle, Esrom
    URV, Dept Quim Fis & Inorgan, Fis & Cristal Lografia Mat & Nanomat FiCMA FiCNA, EMaS, E-43007 Tarragona, Spain..
    Boguslawski, Jakub
    Wroclaw Univ Sci & Technol, Fac Elect, Laser & Fiber Elect Grp, Wybrzeze S Wyspianskiego 27, PL-50370 Wroclaw, Poland.;Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland..
    Kowalczyk, Maciej
    Wroclaw Univ Sci & Technol, Fac Elect, Laser & Fiber Elect Grp, Wybrzeze S Wyspianskiego 27, PL-50370 Wroclaw, Poland..
    Sotor, Jaroslaw
    Wroclaw Univ Sci & Technol, Fac Elect, Laser & Fiber Elect Grp, Wybrzeze S Wyspianskiego 27, PL-50370 Wroclaw, Poland..
    Aguilo, Magdalena
    URV, Dept Quim Fis & Inorgan, Fis & Cristal Lografia Mat & Nanomat FiCMA FiCNA, EMaS, E-43007 Tarragona, Spain..
    Diaz, Francesc
    URV, Dept Quim Fis & Inorgan, Fis & Cristal Lografia Mat & Nanomat FiCMA FiCNA, EMaS, E-43007 Tarragona, Spain..
    Griebner, Uwe
    Max Born Inst Nonlinear Opt & Short Pulse Spect, Max Born Str 2a, D-12489 Berlin, Germany..
    Petrov, Valentin
    Max Born Inst Nonlinear Opt & Short Pulse Spect, Max Born Str 2a, D-12489 Berlin, Germany..
    Popov, Sergei
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Li, Jiantong
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Mateos, Xavier
    URV, Dept Quim Fis & Inorgan, Fis & Cristal Lografia Mat & Nanomat FiCMA FiCNA, EMaS, E-43007 Tarragona, Spain..
    Östling, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Inkjet-printing of graphene saturable absorbers for similar to 2 mu m bulk and waveguide lasers2018Ingår i: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 8, nr 9, s. 2803-2814Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A technique for inkjet-printing of graphene saturable absorbers (SAs) for similar to 2-mu m bulk and waveguide lasers is presented. Based on distillation-assisted solvent exchange to fabricate high-concentration graphene inks, this technique is capable of producing few-layer graphene films of arbitrary shape. Absorption saturation of graphene printed on glass is demonstrated at similar to 1.56 mu m for picosecond and femtosecond pulses indicating a large fraction of the saturable losses. Inkjet-printed transmission-type graphene SAs are applied in passively Q-switched nanosecond thulium (Tm) microchip and planar waveguide lasers. The Tm microchip laser generates 136 ns / 1.2 mu J pulses at 1917 nm with a repetition rate of 0.37 MHz with a Q-switching conversion efficiency reaching 65%. The planar waveguide laser generates 98 ns / 21 nJ pulses at 1834 nm at a repetition rate in the MHz-range. The inkjet-printing technique is promising for production of patterned SAs for waveguide lasers.

  • 8.
    Loiko, Pavel
    et al.
    ITMO Univ, 49 Kronverkskiy Pr, St Petersburg 197101, Russia..
    Maria Serres, Josep
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Delekta, Szymon Sollami
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Kifle, Esrom
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Mateos, Xavier
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain.;Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Baranov, Alexander
    ITMO Univ, 49 Kronverkskiy Pr, St Petersburg 197101, Russia..
    Aguilo, Magdalena
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Diaz, Francesc
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Griebner, Uwe
    Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Petrov, Valentin
    Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Popov, Sergei
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Li, Jiantong
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik, Integrerade komponenter och kretsar.
    Östling, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Inkjet-Printing of Graphene Saturable Absorbers for similar to 2 mu m Bulk and Waveguide Lasers2017Ingår i: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE , 2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    We report on inkjet-printing of graphene saturable absorbers (SAs) suitable for passive Q-switching of similar to 2-mu m bulk and waveguide lasers. Using graphene-SA in a microchip Tm:KLu(WO4)(2) laser, 1.2 mu J/136 ns pulses are generated at 1917 nm.

  • 9.
    Sollami Delekta, Szymon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik.
    Inkjet Printing of Graphene-based Microsupercapacitors for Miniaturized Energy Storage Applications2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Printing technologies are becoming increasingly popular because they enable the large-scale and low-cost production of functional devices with various designs, functions, mechanical properties and materials. Among these technologies, inkjet printing is promising thanks to its direct (mask-free) patterning, non-contact nature, low material waste, resolution down to 10 µm, and compatibility with a broad range of materials and substrates. As a result, inkjet printing has applications in several fields like wearables, opto-electronics, thin-film transistors, displays, photovoltaic devices, and in energy storage. It's in energy storage that the technique shows its full potential by allowing the production of miniaturized devices with a compact form factor, high power density and long cycle life, called microsupercapacitors (MSCs). To this end, graphene has a number of remarkable properties like high electrical conductivity, large surface area, elasticity and transparency, making it a top candidate as an electrode material for MSCs.

    Some key drawbacks limit the use of inkjet printing for the production of graphene-based MSCs. This thesis aims at improving its scalability by producing fully inkjet printed devices, and extending its applications through the integration of inkjet printing with other fabrication techniques.

    MSCs typically rely on the deposition by hand of gel electrolyte that is not printable or by submerging the whole structure into liquid electrolyte. Because of this, so far large-scale production of more than 10 interconnected devices has not been attempted. In this thesis, a printable gel electrolyte ink based on poly(4-styrene sulfonic acid) was developed, allowing the production of large arrays of more than 100 fully inkjet printed devices connected in series and parallel that can be reliably charged up to 12 V. Also, a second electrolyte ink based on nano-graphene oxide, a solid-state material with high ionic conductivity, was formulated to optimize the volumetric performance of these devices. The resulting MSCs were also fully inkjet printed and exhibited an overall device thickness of around 1 µm, yielding a power density of 80 mW cm-3.

    Next, the use of inkjet printing of graphene was explored for the fabrication of transparent MSCs. This application is typically hindered by the so-called coffee-ring effect, which creates dark deposits on the edges of the drying patterns and depletes material from the inside area. In light of this issue, inkjet printing was combined with etching to remove the dark deposits thus leaving uniform and thin films of graphene with vertical sidewalls. The resulting devices showed a transmittance of up to 90%.

    Finally, the issue of the substrate compatibility of inkjet printed graphene was addressed. Although inkjet printing is considered to have broad substrate versatility, it is unreliable on hydrophilic or porous substrates and most inks (including graphene inks) require thermal annealing that damages substrates that are not resistant to heat. Accordingly, a technique based on inkjet printing and wet transfer was developed to reliably deposit graphene-based MSCs on a number of substrates, including flat, 3D, porous, plastics and biological (plants and fruits) with adverse surfaces.

    The contributions of this thesis have the potential to boost the use of inkjet printed MSCs in applications requiring scalability and resolution (e.g. on-chip integration) as well as applications requiring conformability and versatility (e.g. wearable electronics).

  • 10.
    Zhao, Yichen
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Lobov, Gleb
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Optik och Fotonik, OFO.
    Sugunan, Abhilash
    Chemistry, Materials and Surfaces Unit, SP Technical Research Institute of Sweden.
    Karlsson, Mikael
    Department of Sensor system, Acreo Swedish ICT AB.
    Marinins, Aleksandrs
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Optik och Fotonik, OFO.
    Delekta, Szymon Sollami
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Optik och Fotonik, OFO.
    Yan, Min
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Optik och Fotonik, OFO.
    Östling, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Wang, Qin
    Department of Sensor system, Acreo Swedish ICT AB.
    Popov, Sergei
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Optik och Fotonik, OFO.
    Toprak, Muhammet S.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Electrical Field Induced Alignment of P3HT NanofibersManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Abstract: Poly 3-hexylthiophene (P3HT) is one of the most studied conjugated polymers for organic solar cell applications due to its light weight, flexible processing methods and low cost fabrication. However, the hole mobility in P3HT is still relatively low compared to that of the inorganic semiconductors, which is one of the main challenges to achieve better performance of organic solar cells. The P3HT nanofibers with aligned by inducing an external electric field have been studied to improve the hole mobility in P3HT nanofibers. Here we present an AC electric field (1.3 V/µm, 50 Hz) induced alignment of P3HT nanofibers with two different lengths. The optical absorption spectra of aligned nanofibers were measured under different polarizations of incident light. The longer nanofibers showed higher dichroic raitos than that of shorter nanofibers, revealing a better alignment pattern. The photoconductivity of non-aligned and aligned P3HT nanofibers were measured and compared, where the aligned P3HT nanofibers showed a ~270% higher dark current than that of non-aligned sample. Moreover, the current measured under the illumination showed ~110% enhancement in the aligned P3HT nanofibers while only ~70% enhancement was obseved in non-aligned nanofibers, revealing that the alignment process have the potential to improve the mobility for optoelectronic applications. 

  • 11.
    Östling, Mikael
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Smith, Anderson
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Vaziri, Sam
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Delekta, Szymon Sollami
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Li, Jiantong
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Lemme, Max C.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar. Siegen University, Germany.
    Emerging graphene device technologies2016Ingår i: Emerging Nanomaterials and Devices, Electrochemical Society, 2016, Vol. 75, nr 13, s. 17-35, artikel-id 13Konferensbidrag (Refereegranskat)
    Abstract [en]

    Graphene has a wide range of attractive electrical and mechanical properties. This unique blend of properties make it a good candidate for emerging and future device technologies, such as sensors, high frequency electronics, and energy storage devices. In this review paper, each of the aforementioned applications will be explored along with demonstrations of their operating principles. Specifically, we explore pressure and humidity sensors, graphene base transistor for high frequency applications, and supercapacitors. In addition, this paper provides a general overview of these graphene technologies and, in the case of pressure and humidity sensors, benchmarking against other competing technologies. This paper further shows possible and prospective paths that are suitable for future graphene research to take.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf