Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alneberg, Johannes
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bioinformatic Methods in Metagenomics2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Microbial organisms are a vital part of our global ecosystem. Yet, our knowledge of them is still lacking. Direct sequencing of microbial communities, i.e. metagenomics, have enabled detailed studies of these microscopic organisms by inspection of their DNA sequences without the need to culture them. Furthermore, the development of modern high- throughput sequencing technologies have made this approach more powerful and cost-effective. Taken together, this has shifted the field of microbiology from previously being centered around microscopy and culturing studies, to largely consist of computational analyses of DNA sequences. One such computational analysis which is the main focus of this thesis, aims at reconstruction of the complete DNA sequence of an organism, i.e. its genome, directly from short metagenomic sequences.

    This thesis consists of an introduction to the subject followed by five papers. Paper I describes a large metagenomic data resource spanning the Baltic Sea microbial communities. This dataset is complemented with a web-interface allowing researchers to easily extract and visualize detailed information. Paper II introduces a bioinformatic method which is able to reconstruct genomes from metagenomic data. This method, which is termed CONCOCT, is applied on Baltic Sea metagenomics data in Paper III and Paper V. This enabled the reconstruction of a large number of genomes. Analysis of these genomes in Paper III led to the proposal of, and evidence for, a global brackish microbiome. Paper IV presents a comparison between genomes reconstructed from metagenomes with single-cell sequenced genomes. This further validated the technique presented in Paper II as it was found to produce larger and more complete genomes than single-cell sequencing.

  • 2.
    Alneberg, Johannes
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Bennke, Christin
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Beier, Sara
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Jürgens, Klaus
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Ekman, Martin
    Department of Ecology, Environment and Plant Sciences, Stockholm University Science for Life Laboratory, Solna, Sweden.
    Ininbergs, Karolina
    Department of Ecology, Environment and Plant Sciences, Stockholm University Science for Life Laboratory, Solna, Sweden.
    Labrenz, Matthias
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Recovering 2,032 Baltic Sea microbial genomes by optimized metagenomic binningManuscript (preprint) (Other academic)
    Abstract [en]

    Aquatic microorganism are key drivers of global biogeochemical cycles and form the basis of aquatic food webs. However, there is still much left to be learned about these organisms and their interaction within specific environments, such as the Baltic Sea. Crucial information for such an understanding can be found within the genome sequences of organisms within the microbial community.

    In this study, the previous set of Baltic Sea clusters, constructed by Hugert et al., is greatly expanded using a large set of metagenomic samples, spanning the environmental gradients of the Baltic Sea. In total, 124 samples were individually assembled and binned to obtain 2,032 Metagenome Assembled Genomes (MAGs), clustered into 353 prokaryotic and 14 eukaryotic species- level clusters. The prokaryotic genomes were widely distributed over the prokaryotic tree of life, representing 20 different phyla, while the eukaryotic genomes were mostly limited to the division of Chlorophyta. The large number of reconstructed genomes allowed us to identify key factors determining the quality of the genome reconstructions.

    The Baltic Sea is heavily influenced of human activities of which we might not see the full implications. The genomes reported within this study will greatly aid further studies in our strive for an understanding of the Baltic Sea microbial ecosystem.

  • 3.
    Alneberg, Johannes
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bjarnason, Brynjar Smári
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    de Bruijn, Ino
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Bioinformatics Infrastructure for Life Sciences (BILS), Sweden.
    Schirmer, Melanie
    Quick, Joshua
    Ijaz, Umer Z.
    Lahti, Leo
    Loman, Nicholas J.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Quince, Christopher
    Binning metagenomic contigs by coverage and composition2014In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 11, no 11, p. 1144-1146Article in journal (Refereed)
    Abstract [en]

    Shotgun sequencing enables the reconstruction of genomes from complex microbial communities, but because assembly does not reconstruct entire genomes, it is necessary to bin genome fragments. Here we present CONCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes. We demonstrate high recall and precision on artificial as well as real human gut metagenome data sets.

  • 4.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Karlsson, Christofer M. G.
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden..
    Divne, Anna-Maria
    Uppsala Univ, Dept Cell & Mol Biol, SciLifeLab, Uppsala, Sweden..
    Bergin, Claudia
    Uppsala Univ, Dept Cell & Mol Biol, SciLifeLab, Uppsala, Sweden..
    Homa, Felix
    Uppsala Univ, Dept Cell & Mol Biol, SciLifeLab, Uppsala, Sweden..
    Lindh, Markus V.
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden.;Lund Univ, Dept Biol, Lund, Sweden..
    Hugerth, Luisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ettema, Thijs J. G.
    Uppsala Univ, Dept Cell & Mol Biol, SciLifeLab, Uppsala, Sweden..
    Bertilsson, Stefan
    Uppsala Univ, Dept Ecol & Genet, Sci Life Lab, Limnol, Uppsala, Sweden..
    Andersson, Anders F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pinhassi, Jarone
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden..
    Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes2018In: Microbiome, ISSN 0026-2633, E-ISSN 2049-2618, Vol. 6, article id 173Article in journal (Refereed)
    Abstract [en]

    Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms. Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (average 99.51% sequence identity; range 98.77-99.84%) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs. Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.

  • 5.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Karlsson, Christofer M.G.
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Divne, Anna-Maria
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Bergin, Claudia
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Homa, Felix
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Lindh, Markus V.
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Hugerth, Luisa W.
    Karolinska Institutet, Science for Life Laboratory, Department of Molecular, Tumour and Cell Biology, Centre for Translational Microbiome Research, Solna, Sweden.
    Ettema, Thijs JG
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden.
    Bertilsson, Stefan
    Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomesManuscript (preprint) (Other academic)
    Abstract [en]

    Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms.

    Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (>98.7% identity) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs; the metagenome assembly was found to cause incompleteness to a higher degree than the binning procedure.

    Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.

  • 6.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundh, John
    Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
    Bennke, Christin
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Beier, Sara
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Lundin, Daniel
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Hugerth, Luisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Kisand, Veljo
    University of Tartu, Institute of Technology, Tartu, Estonia.
    Riemann, Lasse
    Section for Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
    Jürgens, Klaus
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Labrenz, Matthias
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Andersson, Anders F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic SeaManuscript (preprint) (Other academic)
    Abstract [en]

    The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within microbial ecosystems, but are computationally heavy to perform. We here present the BAltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.

  • 7.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundh, John
    Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, S-17165 Solna, Sweden..
    Bennke, Christin
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Beier, Sara
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Lundin, Daniel
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, S-39182 Kalmar, Sweden..
    Hugerth, Luisa W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Mol Tumor & Cell Biol, Ctr Translat Microbiome Res, Sci Life Lab, S-17165 Solna, Sweden..
    Pinhassi, Jarone
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, S-39182 Kalmar, Sweden..
    Kisand, Veljo
    Univ Tartu, Inst Technol, EE-50411 Tartu, Estonia..
    Riemann, Lasse
    Univ Copenhagen, Sect Marine Biol Sect, Dept Biol, DK-3000 Helsingor, Denmark..
    Juergens, Klaus
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Labrenz, Matthias
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Andersson, Anders F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic Sea2018In: Scientific Data, E-ISSN 2052-4463, Vol. 5, article id 180146Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea is one of the world's largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.

  • 8. Bell, E.
    et al.
    Lamminmäki, T.
    Alneberg, Johannes
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Qian, C.
    Xiong, W.
    Hettich, R. L.
    Balmer, L.
    Frutschi, M.
    Sommer, G.
    Bernier-Latmani, R.
    Biogeochemical cycling by a low-diversity microbial community in deep groundwater2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, no SEP, article id 2129Article in journal (Refereed)
    Abstract [en]

    Olkiluoto, an island on the south-west coast of Finland, will host a deep geological repository for the storage of spent nuclear fuel. Microbially induced corrosion from the generation of sulphide is therefore a concern as it could potentially compromise the longevity of the copper waste canisters. Groundwater at Olkiluoto is geochemically stratified with depth and elevated concentrations of sulphide are observed when sulphate-rich and methane-rich groundwaters mix. Particularly high sulphide is observed in methane-rich groundwater from a fracture at 530.6 mbsl, where mixing with sulphate-rich groundwater occurred as the result of an open drill hole connecting two different fractures at different depths. To determine the electron donors fuelling sulphidogenesis, we combined geochemical, isotopic, metagenomic and metaproteomic analyses. This revealed a low diversity microbial community fuelled by hydrogen and organic carbon. Sulphur and carbon isotopes of sulphate and dissolved inorganic carbon, respectively, confirmed that sulphate reduction was ongoing and that CO2 came from the degradation of organic matter. The results demonstrate the impact of introducing sulphate to a methane-rich groundwater with limited electron acceptors and provide insight into extant metabolisms in the terrestrial subsurface. 

  • 9.
    Charvet, Sophie
    et al.
    IOW Leibniz Inst Balt Sea Res, Warnemunde, Germany..
    Riemann, Lasse
    Univ Copenhagen, Marine Biol Sect, Dept Biol, Copenhagen, Denmark..
    Alneberg, Johannes
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Borries, Julian
    HYDRO BIOS Apparatebau GmbH, Altenholz, Germany..
    Fischer, Uwe
    HYDRO BIOS Apparatebau GmbH, Altenholz, Germany..
    Labrenz, Matthias
    IOW Leibniz Inst Balt Sea Res, Warnemunde, Germany..
    AFISsys - An autonomous instrument for the preservation of brackish water samples for microbial metatranscriptome analysis2019In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 149, p. 351-361Article in journal (Refereed)
    Abstract [en]

    Microbial communities are the main drivers of biogeochemical cycling of multiple elements sustaining life in the ocean. The rapidity of their response to stressors and abrupt environmental changes implies that even fast and infrequent events can affect local transformations of organic matter and nutrients. Modern molecular techniques now allow for monitoring of microbial activities and functions in the environment through the analysis of genes and expressed genes contained in natural microbial assemblages. However, messenger RNA turnover in cells can be as short as 30 seconds and stability varies greatly between transcripts. Sampling of in situ communities involves an inevitable delay between the collection of seawater and the extraction of its RNA, leaving the bacterial communities plenty of time to alter their gene expression. The characteristics of microbial RNA turnover make time-series very difficult because samples need to be processed immediately to limit alterations to the metatranscriptomes. To address these challenges we designed an autonomous in situ fixation multi-sampler (AFISsys) for the reliable sampling of microbial metatranscriptomes at frequent intervals, for refined temporal resolution. To advance the development of this instrument, we examined the minimal seawater volume necessary for adequate coverage of community gene expression, and the suitability of phenol/ethanol fixation for immediate and long-term preservation of transcripts from a microbial community. We then evaluated the field eligibility of the instrument itself, with two case studies in a brackish system. AFISsys is able to collect, fix, and store water samples independently at a predefined temporal resolution. Phenol/ethanol fixation can conserve metatranscriptomes directly in the environment for up to a week, for later analysis in the laboratory. Thus, the AFISsys constitutes an invaluable tool for the integration of molecular functional analyses in environmental monitoring in brackish waters and in aquatic environments in general. 

  • 10.
    Hu, Yue
    et al.
    KTH, School of Biotechnology (BIO).
    Ndegwa, Nelson
    Karolinska Institutet, Department of Medical Epidemiology and Biostatistics (MEB).
    Alneberg, Johannes
    KTH, School of Biotechnology (BIO).
    Johansson, Sebastian
    KTH, School of Biotechnology (BIO).
    Logue, Jürg
    Linnaeus University, Centre for Ecology and Evolution in Microbial Model Systems.
    Huss, Mikael
    Stockholm University.
    Käller, Max
    KTH, School of Biotechnology (BIO).
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Jens
    Stockholm Vatten och Avfall AB.
    Andersson, Anders
    KTH, School of Biotechnology (BIO).
    Stationary and portable sequencing-based approaches for tracing wastewater contamination in urban stormwater systemsManuscript (preprint) (Other academic)
    Abstract [en]

    Urban sewer systems consist of wastewater and stormwater sewers, of which typically only

    the wastewater is processed before being discharged. Occasionally, misconnections or

    damages in the network occur, resulting in wastewater entering the stormwater system and

    being discharged without prior processing. Cultivation of faecal indicator bacteria, such as

    Escherichia coli (E. coli), is the current standard for tracing wastewater contamination. This

    method is cheap but cannot be employed in the field and is characterised by its limited

    specificity. Here, we compared the E. coli culturing approach with two different DNA

    sequencing-based methodologies (i.e., 16S rRNA amplicon sequencing on the Illumina

    MiSeq platform and shotgun metagenomic sequencing on an Oxford Nanopore MinIOn

    device), analysing 73 stormwater samples collected throughout the Stockholm city areas.

    High correlations were obtained between E. coli culturing counts and frequencies of human

    gut microbiome sequencing reads (via amplicon sequencing), indicating that E. coli is indeed

    a good indicator of faecal contamination. In contrast to E.coli culturing, amplicon sequencing

    could, however, further distinguish between two different sources of contamination in an

    area, where misconnections in the stormwater system were later on detected. Shotgun

    metagenomic sequencing on a subset of the samples using the portable Oxford Nanopore

    MinION real-time sequencing device correlated well with the amplicon sequencing data. In

    summary, this study shows that DNA sequencing allows distinguishing different

    contamination sources in stormwater systems and demonstrates the potential of using a

    portable sequencing device in the field for tracking faecal contamination.

  • 11.
    Hu, Yue O. O.
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ndegwa, Nelson
    Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden..
    Alneberg, Johannes
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Sebastian
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Logue, Jurg Brendan
    Huss, Mikael
    Käller, Max
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Jens
    Stockholm Vatten Och Avfall AB, Stockholm, Sweden..
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stationary and portable sequencing-based approaches for tracing wastewater contamination in urban stormwater systems2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 11907Article in journal (Refereed)
    Abstract [en]

    Urban sewer systems consist of wastewater and stormwater sewers, of which only wastewater is processed before being discharged. Occasionally, misconnections or damages in the network occur, resulting in untreated wastewater entering natural water bodies via the stormwater system. Cultivation of faecal indicator bacteria (e.g. Escherichia coli; E. coli) is the current standard for tracing wastewater contamination. This method is cheap but has limited specificity and mobility. Here, we compared the E. coli culturing approach with two sequencing-based methodologies (Illumina MiSeq 16S rRNA gene amplicon sequencing and Oxford Nanopore MinION shotgun metagenomic sequencing), analysing 73 stormwater samples collected in Stockholm. High correlations were obtained between E. coli culturing counts and frequencies of human gut microbiome amplicon sequences, indicating E. coli is indeed a good indicator of faecal contamination. However, the amplicon data further holds information on contamination source or alternatively how much time has elapsed since the faecal matter has entered the system. Shotgun metagenomic sequencing on a subset of the samples using a portable real-time sequencer, MinION, correlated well with the amplicon sequencing data. This study demonstrates the use of DNA sequencing to detect human faecal contamination in stormwater systems and the potential of tracing faecal contamination directly in the field.

  • 12.
    Hugerth, Luisa W.
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Larsson, John
    Alneberg, Johannes
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lindh, Markus V.
    Legrand, Catherine
    Pinhassi, Jarone
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Metagenome-assembled genomes uncover a global brackish microbiome2015In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 16, article id 279Article in journal (Refereed)
    Abstract [en]

    Background: Microbes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them. Results: We use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world's largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes' seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts. Conclusions: We describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.

  • 13.
    Markussen, Trine
    et al.
    Univ Copenhagen, Dept Biol, Marine Biol Sect, Helsingor, Denmark..
    Happel, Elisabeth M.
    Univ Copenhagen, Dept Biol, Marine Biol Sect, Helsingor, Denmark..
    Teikari, Jonna E.
    Univ Helsinki, Dept Microbiol, Helsinki, Finland..
    Huchaiah, Vimala
    Univ Tartu, Inst Technol, Tartu, Estonia..
    Alneberg, Johannes
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivonen, Kaarina
    Univ Helsinki, Dept Microbiol, Helsinki, Finland..
    Riemann, Lasse
    Univ Copenhagen, Dept Biol, Marine Biol Sect, Helsingor, Denmark..
    Middelboe, Mathias
    Univ Copenhagen, Dept Biol, Marine Biol Sect, Helsingor, Denmark..
    Kisand, Veljo
    Univ Tartu, Inst Technol, Tartu, Estonia..
    Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change2018In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 20, no 8, p. 3083-3099Article in journal (Refereed)
    Abstract [en]

    Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.

  • 14. Quince, Christopher
    et al.
    Delmont, Tom O.
    Raguideau, Sebastien
    Alneberg, Johannes
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Darling, Aaron E.
    Collins, Gavin
    Eren, A. Murat
    DESMAN: a new tool for de novo extraction of strains from metagenomes2017In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 18, article id 181Article in journal (Refereed)
    Abstract [en]

    We introduce DESMAN for De novo Extraction of Strains from Metagenomes. Large multi-sample metagenomes are being generated but strain variation results in fragmentary co-assemblies. Current algorithms can bin contigs into metagenome-assembled genomes but are unable to resolve strain-level variation. DESMAN identifies variants in core genes and uses co-occurrence across samples to link variants into haplotypes and abundance profiles. These are then searched for against non-core genes to determine the accessory genome of each strain. We validated DESMAN on a complex 50-species 210-genome 96-sample synthetic mock data set and then applied it to the Tara Oceans microbiome.

  • 15.
    Svartström, Olov
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Alneberg, Johannes
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Terrapon, Nicolas
    Lombard, Vincent
    de Bruijn, Ino
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Malmsten, Jonas
    Dalin, Ann-Marie
    El Muller, Emilie
    Shah, Pranjul
    Wilmes, Paul
    Henrissat, Bernard
    Aspeborg, Henrik
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation2017In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 11, no 11, p. 2538-2551Article in journal (Refereed)
    Abstract [en]

    The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf