Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baykov, Vitaly
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Point defect interactions and structural stability of compounds2007Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Theoretical studies of point defect interactions and structural stability of compounds have been performed using density functional theory. The defect-related properties, such as activation energy of diffusion, electronic and magnetic structure of selected materials have been studied.

    The major part of the present work is devoted to a very important material for semiconductor industry, GaAs. The formation energies of intrinsic point defects and the solution energies of 3d transitions in GaAs have been calculated from first principles. Based on the calculated energies, we analysed the site preference of defects in the crystal. The tendency of defects to form clusters has been investigated for the intrinsic defects as well as for impurities in GaAs. The magnetic moment of 3d impurities has been calculated as a function of the chemical environment. The possibility of increasing the Curie temperature in (Ga,Mn)As by co-doping it with Cr impurities has been examined on the basis of calculated total energy difference between the disordered local moment and the ferromagnetically ordered spin configurations. We found that, in order to reach the highest critical temperature, GaAs should be separately doped with either Cr or Mn impurities. Also, we have shown that diffusion barrier of interstitial Mn depends on the charge state of this impurity in (Ga, Mn)As. The formation of defect complexes between interstitial and substitutional Mn atoms, and their influence on the value of diffusion barrier for interstitial Mn, has been studied.

    The pair interactions energies between interstitial oxygen atoms in hcp Zr, Hf and Ti have been calculated using first principles. Based on the calculated energies, the oxygen ordering structures in IVB transition metal solid solutions have been explained. A prediction of nitrogen ordering in Hf-N solid solution has been made.

    The thermodynamic description of intermetallic compounds in the Zr-Sn binary system has been obtained. The conclusion has been made that Zr substitution on the Sn sites takes place in the Zr4Sn phase, which accounts for the unusual stoichiometry of this Cr3Si structure type compound.

    The influence of pressure on the phase stability in the Fe-Si system has been investigated. We have found instability of the hcp Fe0.9Si0.1 random alloy with respect to the decomposition onto the Si-poor hcp Fe alloy and the B2 FeSi under high pressure. The tendency of this decomposition becomes stronger with increasing the applied pressure.

  • 2.
    Baykov, Vitaly
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Isaev, P. A.
    Moscow State Institute of Steel and Alloys.
    Korzhavyi, Pavel A.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Vekilov, Y. K.
    Moscow State Institute of Steel and Alloys.
    Abrikosov, I. A.
    Linköping University.
    Ab Initio Studies of the Energy Characteristics and Magnetic Properties of Point Defects in GaAs2005In: Physics of the solid state, ISSN 1063-7834, E-ISSN 1090-6460, Vol. 47, no 10, p. 1831-1836Article in journal (Refereed)
    Abstract [en]

    The formation energies of intrinsic point defects and solution energies of transition metal impurities in gallium arsenide are determined on the basis of ab initio calculations using the method of a locally self-consistent Green's function, which is a generalization of the coherent potential approximation. Based on the calculated energies, the conclusion is made that the As-Ga antisite defect is the most common intrinsic defect in GaAs. Calculations showed that transition metal impurities, except for Ni, preferentially occupy gallium sites substitutionally. The magnetic moments of impurity atoms are calculated as a function of the chemical environment. It is shown that, in compensated GaAs, Mn atoms tend to form clusters.

  • 3.
    Baykov, Vitaly
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jerlerud Perez, Rosa
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Korzhavyi, Pavel A.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sundman, Bo
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Computational Thermodynamics.
    Johansson, Börje
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Structural stability of intermetallic phases in the Zr-Sn system2006In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 55, no 5, p. 485-488Article in journal (Refereed)
    Abstract [en]

    A thermodynamic description of the intermetallic compounds in the Zr-Sn binary system has been obtained using total energy calculations by means of the Vienna ab initio simulation package. Our calculations show that hexagonal compounds Zr5Sn4 and Zr5Sn3 are the most stable phases in the Zr-Sn binary system. Their high stability is found to be due to hybridization of the Sn 5p with Zr 4d electronic states. Based on the calculated energies, the conclusion is made that Zr substitution on the Sri sites takes place in the Zr4Sn phase, which accounts for the unusual stoichiometry of this Cr3Si structure type compound.

  • 4.
    Baykov, Vitaly
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Korzhavyi, Pavel A.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Johansson, Börje
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Diffusion of Interstitial Mn in the Dilute Magnetic Semiconductor (Ga,Mn)As: The Effect of a Charge State2008In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 101, no 17, p. 177204-Article in journal (Refereed)
    Abstract [en]

    Migration barriers for diffusion of interstitial Mn in the dilute magnetic semiconductor (Ga,Mn)As are studied using first-principles calculations. The diffusion pathway goes through two types of interstitial sites: As coordinated and Ga coordinated. The energy profile along the path is found to depend on the ratio of concentrations between substitutional and interstitial Mn in GaAs. Two regions of distinctly different behavior, corresponding to n-type and p-type (Ga,Mn)As, are identified. The difference in mobility is a reflection of the change in the charge state of Mn interstitials (double donors) that occurs in the presence of substitutional Mn impurities (acceptors). In addition, substitutional Mn impurities are shown to act as traps for interstitial Mn. The effective migration barrier for the positively doubly charged Mn interstitials in p-type (Ga,Mn)As is estimated to vary from 0.55 to about 0.95 eV.

  • 5.
    Baykov, Vitaly
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Korzhavyi, Pavel A.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Smirnova, E. A.
    Department of Theoretical Physics of Steel and Alloys, Moscow.
    Abrikosov, I. A.
    Department of Physics and Measurement Technology, Linköping University.
    Johansson, Börje
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Magnetic properties of 3d impurities in GaAs2007In: Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, E-ISSN 1873-4766, Vol. 310, no 2, p. 2120-2122Article in journal (Refereed)
    Abstract [en]

    Electronic structure, thermodynamic, and magnetic properties of 3d-transition metal (TM) impurities in GaAs have been studied from first principles using Green's function approach. The studied TM impurities (V, Cr, Mn, and Fe) are found to form substitutional alloys on the Ga sublattice. The possibility of raising the Curie temperature TC in (GaMn) As by co-doping it with Cr impurities was examined on the basis of total energy difference between the disordered local moment (DLM) and the ferromagnetically ordered (FM) spin configurations. The calculated Curie temperature and magnetic moment have maxima for GaAs doped with Cr and Mn. The magnetic properties of Mn-doped GaAs are shown to be more sensitive to antisite As defects than those of Cr-doped GaAs. However, the Cr impurities are sensitive to the presence of acceptor defects, such as vacancies on the Ga sublattice. The investigation of the electronic structure of pseudo-ternary alloys (Ga(1-x-y)MnxCry) As has shown a mutual compensation of Mn and Cr impurities. Therefore, in order to reach the highest critical temperature, GaAs has to be separately doped with Cr or Mn impurities. The GaAs doped with Fe is found to be non-ferromagnetic.

  • 6.
    Isaev, Eyvaz
    et al.
    Moscow State Institute of Steel and Alloys.
    Baykov, Vitaly
    KTH, Superseded Departments, Materials Science and Engineering.
    Korzhavyi, Pavel A.
    KTH, Superseded Departments, Materials Science and Engineering.
    Vekilov, Yu. Kh.
    Johansson, Börje
    KTH, Superseded Departments, Materials Science and Engineering.
    Abrikosov, Igor
    Eriksson, O.
    Intrinsic defects and transition metal impurities in GaAs2004In: Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, E-ISSN 1873-4766, Vol. 272, no 3, p. 1961-1962Article in journal (Refereed)
    Abstract [en]

    Thermodynamics of intrinsic point defects, 3d-transition metal (TM) impurities, and various defect pairs in GaAs have been studied by means of the locally self-consistent Green's function method. Antisite defects, As-Ga, are found to be the most energetically favorable defects in the As-rich GaAs. The studied TM impurities (V, Cr, Mn, and Fe) are found to form substitutional alloys on the Ga sublattice. The magnetic moments of TM impurities in the GaAs host are calculated under the assumption that orbital moments of TM are quenched and the total magnetization is due to spill ordering of electrons in the crystal. Thermodynamic possibility of formation of complexes between TM-atoms is investigated.

  • 7.
    Ruban, Andrei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Baykov, Vitaly
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Johansson, Börje
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Dmitriev, V.V.
    Blanter, Mihail
    Ab initio based investigation of the oxygen and nitrogen interstitial ordering in hcp Hf, Zr, and Ti: An ab initio study2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, no 13, p. 134110-Article in journal (Refereed)
    Abstract [en]

    We investigate the ordering of oxygen and nitrogen interstitials in hcp Zr, Hf, and Ti using the corresponding oxygen-oxygen and nitrogen-nitrogen interactions obtained in the state-of-the-art first-principles calculations. Two main contributions, chemical and strain induced, to the interstitial-interstitial interactions are obtained by different techniques. We find that there is the strong repulsion between interstitial atoms at the nearest-and next-nearest-neighbor coordination shells, which is solely determined by the chemical interaction determined on a fixed ideal lattice, while both contributions are important for more distant coordination shells. The Monte Carlo simulations reveal the existence of three stoichiometric compositions, MeI1/6, MeI1/3, and MeI1/2, for the ground-state structures of interstitials, having different ordering types. Our results for the structures of oxygen interstitials are in good agreement with existing experimental data for the Ti and Hf alloys. In the case of Zr-O interstitial alloys, we correctly predict the general type of ordering, although the detailed structure is at variance the experimental observations. The ordering transition temperatures in some cases are overestimated by a factor of 2. We also predict the ordering type of nitrogen interstitials in hcp Ti, Zr, and Hf, which are similar to those in the case of oxygen interstitials.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf