Change search
Refine search result
1234567 1 - 50 of 383
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aho-Mantila, L.
    et al.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland.;VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  • 2. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Saarelma, S
    Hillesheim, J
    Pamela, S
    Wiesen, S
    Maggi, C
    Urano, H
    Drewelow, P
    Leyland, M
    Moulton, D
    Menmuir, S
    Diamagnetic MHD Equations for Plasmas with Fast Flow and its Application to ELM Analysis in JT-60U and JET-ILW2016In: 26th IAEA Fusion Energy Conference, 17-22 October 2016, 2016Conference paper (Refereed)
  • 3. Aiba, N.
    et al.
    Giroud, C.
    Honda, M.
    Delabie, E.
    Saarelma, S.
    Frassinetti, L
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Lupelli, I.
    Casson, F. J.
    Pamela, S.
    Urano, H.
    Maggi, C. F.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 12, article id 126001Article in journal (Refereed)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 4. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Saarelma, S
    Lupelli, I
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Maggi, C
    Impact of rotation and ion diamagnetic drift on ELM stability in JET-ILW2016In: 33rd Annual meeting of Japan society of plasma science and nuclear fusion research JSPF, Nov 2016. Japan, 2016Conference paper (Other academic)
  • 5. Aiba, N.
    et al.
    Pamela, S.
    Honda, M.
    Urano, H.
    Giroud, C.
    Delabie, E.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Lupelli, I.
    Hayashi, N.
    Huijsmans, G.
    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 1, article id 014032Article in journal (Refereed)
    Abstract [en]

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  • 6. Alfier, A.
    et al.
    Annibaldi, Silvia Valeria
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. Euratom/ENEA Association, Italy.
    Bonomo, F.
    Buratti, P.
    Franz, P.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marrelli, L.
    Pasqualotto, R.
    Piovesan, P.
    Spizzo, G.
    Energy confinement in high current RFX-mod plasmas2007In: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts, 2007, no 1, p. 415-418Conference paper (Refereed)
  • 7. Alfier, A.
    et al.
    Pasqualotto, R.
    Spizzo, G.
    Canton, A.
    Fassina, A.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Electron temperature profiles in RFX-mod2008In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 50, no 3, p. 035013-Article in journal (Refereed)
    Abstract [en]

    Electron temperature profiles have been measured by the main Thomson scattering ( TS) diagnostic on the RFX-mod reversed field pinch experiment in Padova, Italy. The increased accuracy and spatial and temporal resolution permits one to measure in detail the improvements in T-e profiles, obtained with the active saddle coil system, which allows one to obtain core temperature 30% higher and scaling stronger with plasma current, steeper gradients in the core (+30%) and at the edge (+60%). 1D power balance calculations show that the active control of MHD modes largely reduces the values of electron heat diffusivity along the whole plasma radius, with similar to 50% reduction at the edge and similar to 30% in the core. The resulting electron energy confinement time is doubled. Further improvements occur during quasi-single helicity (QSH) states: the new TS allows one to study in detail the hot island that develops in the core. A characterization of the island electron thermal profile is presented, in terms of width, temperature increase, gradients and asymmetry; the effect on density profile is also discussed. A 2D transport code has been applied to calculate the heat diffusivity inside the magnetic island corresponding to the QSH state, also considering the correlation between temperature increase and pressure gradient with the chaos level around the island. Finally, electron energy confinement time during QSH states is compared with that in MH states.

  • 8.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality2018In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 8, article id 082517Article in journal (Refereed)
    Abstract [en]

    The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.

  • 9. Arnoux, G.
    et al.
    Loenen, J.
    Bazylev, B.
    Corre, Y.
    Matthews, G. F.
    Balboa, I.
    Clever, M.
    Dejarnac, R.
    Devaux, S.
    Eich, T.
    Gauthier, E.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Horacek, J.
    Jachmich, S.
    Kinna, D.
    Marsen, S.
    Mertens, Ph.
    Pitts, R. A.
    Rack, M.
    Sergienko, G.
    Sieglin, B.
    Stamp, M.
    Thompson, V.
    Thermal analysis of an exposed tungsten edge in the JET divertor2015In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, p. 415-419Article in journal (Refereed)
    Abstract [en]

    In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3-10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.

  • 10.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  • 11.
    Basiuk, V.
    et al.
    CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 12, article id 125012Article in journal (Refereed)
    Abstract [en]

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  • 12. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 10, article id 106016Article in journal (Refereed)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 13.
    Batistoni, Paola
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Frascati, Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Calibration of neutron detectors on the Joint European Torus2017In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 88, no 10, article id 103505Article in journal (Refereed)
    Abstract [en]

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  • 14.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 11, article id 115011Article in journal (Refereed)
    Abstract [en]

    The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.

  • 15.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Brunsell, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Drake, James R.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R2008In: PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, Vol. 100Conference paper (Refereed)
    Abstract [en]

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.

  • 16. Bernardo, J.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Ion temperature and toroidal rotation in JET's low torque plasmas2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 11, article id 11E557Article in journal (Refereed)
    Abstract [en]

    This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.

  • 17. Beurskens, M
    et al.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. EURATOM-VR.
    Maggi, C
    Calabro, C
    Alper, B
    Bourdelle, C
    Angioni, C
    Brezinsek, S
    Buratti, P
    Challis, C
    Flanagan, J
    Giovannozzi, E
    Giroud, C
    Groth, M
    Hobirk, J
    Joffrin, E
    Leyland, M
    Lomas, P
    de la Luna, E
    Kampenaars, M
    Mantica, P
    Maslov, M
    Matthews, G
    Mayoral, M
    Neu, R
    Snyder, P
    Saarelma, P
    Osborne, T
    de Vries, P
    L-H power Threshold, Pedestal Stability and Confinement in JET with a Metallic Wall2012In: 24th IAEA Fusion Energy Conference, 8-13 October 2012, 2012, p. EX/P4-23-Conference paper (Refereed)
    Abstract [en]

    After the change-over from the Carbon-Fibre Composite (CFC) wall to an ITER-like metallic wall (ILW) the baseline type I ELMy H-mode scenario has been re-established in JET with the new plasma-facing materials Be and W. A key finding for ITER is that the power required to enter H-mode has reduced with respect to that in JET with the CFC wall. In JET with the ILW the power threshold to enter H-mode (PL-H) is below the international L-H power threshold scaling P_Martin-08. The minimum threshold is P_L-H=1.8MW compared to P_Martin-08=4MW with a pedestal density of nped=2x10^19m^-3 in plasmas with I_p=2.0 MA, B_t=2.4T. However the threshold depends strongly on density; using slow ion cyclotron heating (ICRH) power ramps P_L-H varies from 1.8 to 4.5MW in a range of lower and upper plasma triangularity (delta_L=0.32-0.4, delta_U =0.19-0.38). Stationary Type I ELMy H-mode operation has been re-established at both low and high triangularity with I_p≤ 2.5MA, q_95=2.8-3.6 and H_98≤1. The achieved plasma collisionality is relatively high, in the range of 1< nu_eff<4 due to the required strong gas dosing. Stability analysis with the linear MHD stability code ELITE show that the pedestal is marginally unstable with respect to the Peeling Ballooning boundary. Due to the stabilising effect of the global pressure Beta_N on the pedestal stability, a strong coupling between core and edge confinement is expected. Indeed in an H-mode profile database comparison with 119 CFC- (0.1< nu_eff<1) and 40 ILW-H-modes a strong coupling of the core versus edge confinement is found, independent of wall material. In addition, the pedestal predictions using the EPED predictive pedestal code coincide with the measured pedestal height over a wide range of normalised pressure 1.5< Beta_N<3.5. Due to the strong core-edge coupling, beneficial effects of core profile peaking on confinement are weak in the database comparison. However, differences in the individual temperature and density profile peaking occur across the database. When collisionality is increased from nu_eff=0.1 to 4, the density peaking decreases from R/L_ne=4 to 0.5 but is compensated by an increase in temperature peaking from R/L_Te = 5-8, offering a challenge for micro turbulence-transport models.

  • 18. Beurskens, M. N. A.
    et al.
    Dunne, M. G.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Bernert, M.
    Cavedon, M.
    Fischer, R.
    Järvinen, A.
    Kallenbach, A.
    Laggner, F. M.
    McDermott, R. M.
    Potzel, S.
    Schweinzer, J.
    Tardini, G.
    Viezzer, E.
    Wolfrum, E.
    The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall2016In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 5, article id 056014Article in journal (Refereed)
    Abstract [en]

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20-30% confinement improvement. The reference plasma is a standard target plasma with I p /B T = 1 MA/2.5 T, total input power P tot ∼ 12 MW and normalized pressure of β N ∼ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ∼1.3 to ∼1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ∼ 0.25) and high (δ ∼ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  • 19. Beurskens, M. N. A.
    et al.
    Dunne, M. G.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Bernert, M.
    Cavedon, M.
    Fischer, R.
    Järvinen, A.
    Kallenbach, A.
    Laggner, F. M.
    McDermott, R. M.
    Tardini, G.
    Viezzer, E.
    Wolfrum, E.
    The role of carbon on the H-mode confinement in ASDEX Upgrade with a metal wall2015In: 42nd European Physical Society Conference on Plasma Physics, EPS 2015, European Physical Society (EPS) , 2015Conference paper (Refereed)
  • 20. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Challis, C.
    Giroud, C.
    Saarelma, S.
    Alper, B.
    Angioni, C.
    Bilkova, P.
    Bourdelle, C.
    Brezinsek, S.
    Buratti, P.
    Calabro, G.
    Eich, T.
    Flanagan, J.
    Giovannozzi, E.
    Groth, M.
    Hobirk, J.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    de la Luna, E.
    Kempenaars, M.
    Maddison, G.
    Maggi, C.
    Mantica, P.
    Maslov, M.
    Matthews, G.
    Mayoral, M-L
    Neu, R.
    Nunes, I.
    Osborne, T.
    Rimini, F.
    Scannell, R.
    Solano, E. R.
    Snyder, P. B.
    Voitsekhovitch, I.
    de Vries, Peter
    Global and pedestal confinement in JET with a Be/W metallic wall2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 4, p. 043001-Article in journal (Refereed)
    Abstract [en]

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H-98(y,H- 2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILWcompared to JET-C at low power fractions Ploss/P-thr,(08)< 2 (where P-loss is (P-in-dW/dt), and P-thr,(08) the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/P-thr,P- 08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H-98((y, 2)) = 0.8 is obtained, compared to H-98((y, 2)) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H-98((y, 2)) <= 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2ms from typically 200 mu s in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured p(ped))/(predicted p(ped), EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.

  • 21. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Challis, C.
    Osborne, T.
    Snyder, P. B.
    Alper, B.
    Angioni, C.
    Bourdelle, C.
    Buratti, P.
    Crisanti, F.
    Giovannozzi, E.
    Giroud, C.
    Groebner, R.
    Hobirk, J.
    Jenkins, I.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    Mantica, P.
    McDonald, D.
    Nunes, I.
    Rimini, F.
    Saarelma, S.
    Voitsekhovitch, I.
    De Vries, P.
    Zarzoso, D.
    Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 1, p. 013001-Article in journal (Refereed)
    Abstract [en]

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 &lt; 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.

  • 22. Beurskens, M. N. A.
    et al.
    Osborne, T. H.
    Horton, L. D.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Groebner, R.
    Leonard, A.
    Lomas, P.
    Nunes, I.
    Saarelma, S.
    Snyder, P. B.
    Balboa, I.
    Bray, B.
    Crombe, K.
    Flanagan, J.
    Giroud, C.
    Giovannozzi, E.
    Kempenaars, M.
    Kohen, N.
    Loarte, A.
    Lonnroth, J.
    de la Luna, E.
    Maddison, G.
    Maggi, C.
    McDonald, D.
    McKee, G.
    Pasqualotto, R.
    Saibene, G.
    Sartori, R.
    Solano, E.
    Suttrop, W.
    Wolfrum, E.
    Walsh, M.
    Yan, Z.
    Zabeo, L.
    Zarzoso, D.
    Pedestal width and ELM size identity studies in JET and DIII-D; implications for ITER2009In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 51, no 12, p. 124051-Article in journal (Refereed)
    Abstract [en]

    The dependence of the H-mode edge transport barrier width on normalized ion gyroradius (rho* = rho/a) in discharges with type I ELMs was examined in experiments combining data for the JET and DIII-D tokamaks. The plasma configuration as well as the local normalized pressure (beta), collisionality (nu*), Mach number and the ratio of ion and electron temperature at the pedestal top were kept constant, while rho* was varied by a factor of four. The width of the steep gradient region of the electron temperature (T-e) and density (n(e)) pedestals normalized to machine size showed no or only a weak trend with rho*. A rho(1/2) or rho(1) dependence of the pedestal width, given by some theoretical predictions, is not supported by the current experiments. This is encouraging for the pedestal scaling towards ITER as it operates at lower rho* than existing devices. Some differences in pedestal structure and ELM behaviour were, however, found between the devices; in the DIII-D discharges, the n(e) and T-e pedestal were aligned at high rho* but the ne pedestal shifted outwards in radius relative to T-e as rho* decreases, while on JET the profiles remained aligned while rho* was scanned by a factor of two. The energy loss at an ELM normalized to the pedestal energy increased from 10% to 40% as rho* increased by a factor of two in the DIII-D discharges but no such variation was observed in the case of JET. The measured pedestal pressures and widths were found to be consistent with the predictions from modelling based on peeling-ballooning stability theory, and are used to make projections towards ITER

  • 23. Beurskens, M N A
    et al.
    Osborne, T H
    Schneider, P A
    Wolfrum, E
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Groebner, R
    Lomas, P
    Nunes, I
    Saarelma, S
    Scannell, R
    Snyder, P B
    Zarzoso, D
    Balboa, I
    Bray, B
    Brix, M
    Flanagan, J
    Giroud, C
    Giovannozzi, E
    Kempenaars, M
    Loarte, A
    de la Luna, E
    Maddison, G
    Maggi, C F
    McDonald, D
    Pasqualotto, R
    Saibene, G
    Sartori, R
    Solano, E
    Walsh, M
    Zabeo, L
    Team, D I I I-D
    Team, ASDEX Upgrade
    Contributors, J E T-E F D A
    H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET2011In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 18, no 5Article in journal (Refereed)
    Abstract [en]

    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width Delta/a proportional to rho*(1/2) to rho* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the E x B velocity. In the multidevice experiment where rho* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with rho* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to Delta(psi) proportional to beta p(1/2). All three devices show a scaling of the pedestal width in normalised poloidal flux as Delta(psi) proportional to beta p(1/2), as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.

  • 24. Beurskens, M. N. A.
    et al.
    Schweinzer, J.
    Angioni, C.
    Burckhart, A.
    Challis, C. D.
    Chapman, I.
    Fischer, R.
    Flanagan, J.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Giroud, C.
    Hobirk, J.
    Joffrin, E.
    Kallenbach, A.
    Kempenaars, M.
    Leyland, M.
    Lomas, P.
    Maddison, G.
    Maslov, M.
    McDermott, R.
    Neu, R.
    Nunes, I.
    Osborne, T.
    Ryter, F.
    Saarelma, S.
    Schneider, P. A.
    Snyder, P.
    Tardini, G.
    Viezzer, E.
    Wolfrum, E.
    The effect of a metal wall on confinement in JET and ASDEX Upgrade2013In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 55, no 12, p. 124043-Article in journal (Refereed)
    Abstract [en]

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H-98 similar to 1 at high Greenwald density fraction of f(GW) similar to 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H-98 similar to 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure beta(N) > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Z(eff) profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within +/- 5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10-20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.

  • 25. Beurskens, M.N.A.
    et al.
    Schweinzer, J
    Angioni, C
    Bourdelle, C
    Challis, C
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Giroud, C
    Hobirk, J
    Joffrin, E
    Kallenbach, A
    Maddison, G.
    Neu, R.
    Osborne, T.
    Ryter, F.
    Saarelma, S.
    Schneider, P.
    Snyder, P.
    Wolfrum, E.
    The Effect of a Metal Wall on Confinement in JET and ASDEX-Upgrade2013In: 40th European Physical Society Conference on Plasma Physics: Espoo, Finland, 1st - 5th July 2013, European Physical Society , 2013Conference paper (Refereed)
  • 26.
    Binda, F.
    et al.
    Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Generation of the neutron response function of an NE213 scintillator for fusion applications2017In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 866, p. 222-229Article in journal (Refereed)
    Abstract [en]

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gammarays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results. (C) 2017 Published by Elsevier B.V.

  • 27.
    Blanken, T. C.
    et al.
    Eindhoven Univ Technol, Control Syst Technol Grp, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.;Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Jonsson, T.
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Vallejos, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Vignitchouk, Ladislas
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Dori, V
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Real-time plasma state monitoring and supervisory control on TCV2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

  • 28.
    Bobkov, V
    et al.
    Max Planck Inst Plasmaphysik, Boltzmannstr 2, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bobkov, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 18, p. 131-140Article in journal (Refereed)
    Abstract [en]

    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 < P-cen / P-total < 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.

  • 29.
    Bobkov, V.
    et al.
    Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET2017In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, p. 1194-1198Article in journal (Refereed)
    Abstract [en]

    Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.

  • 30. Bogomolov, A. V.
    et al.
    Classen, I. G. J.
    Donne, A. J. H.
    Meyer, H.
    Dunne, M.
    Schneider, P. A.
    Wolfrum, E.
    Vanovac, B.
    Fischer, R.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Luhmann, N.C., Jr.
    The effect of nitrogen seeding on ELM filaments2015In: 42nd European Physical Society Conference on Plasma Physics, EPS 2015, European Physical Society (EPS) , 2015Conference paper (Refereed)
  • 31. Bohm, P.
    et al.
    Aftanas, M.
    Bilkova, P.
    Stefanikova, E.
    Mikulin, O.
    Melich, R.
    Janky, F.
    Havlicek, J.
    Sestak, D.
    Weinzettl, V.
    Stockel, J.
    Hron, M.
    Panek, R.
    Scannell, R.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Fassina, A.
    Naylor, G.
    Walsh, M. J.
    Edge Thomson scattering diagnostic on COMPASS tokamak: Installation, calibration, operation, improvements2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 11, p. 11E431-Article in journal (Refereed)
    Abstract [en]

    The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to similar to 1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

  • 32. Bohm, P
    et al.
    Bilkova, P
    Aftanas, M
    Stefanikova, E
    Mikulin, O
    Melich, R
    Janky, J
    Havlicek, H
    Sestak, D
    Weinzettl, V
    Stockel, A
    Hron, R
    Panek, R
    Scannell, R
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Fassina, A
    Naylor, N
    Walsh, J
    Thomson Scattering on COMPASS tokamak: Plasma Edge Profile2013In: 16th International Symposium on Laser Aided Plasma Diagnostics Conference: Madison, Wisconsin, USA, 22-26 September, 2013, 2013Conference paper (Other academic)
  • 33. Bonanomi, N.
    et al.
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Moon, Sunwoo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I
    et al,
    Role of fast ion pressure in the isotope effect in JET L-mode plasmas2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096030Article in journal (Refereed)
    Abstract [en]

    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.

  • 34.
    Bonelli, F.
    et al.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Varoutis, S.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 6, article id 066037Article in journal (Refereed)
    Abstract [en]

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  • 35.
    Borodin, D.
    et al.
    Forschungszentrum Julich, Partner Trilateral Euregio Cluster TEC, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.;Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Garcia-Carrasco, A.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 510-515Article in journal (Refereed)
    Abstract [en]

    ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the "ERO-min" fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations.

  • 36. Borodkina, I.
    et al.
    Borodin, D.
    Brezinsek, S.
    Tsvetkov, I. V.
    Kurnaev, V. A.
    Guillemaut, C.
    Maslov, M.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Intra-ELM tungsten sputtering in JET ITER-like wall: analytical studies of Be impurity and ELM type influence2017In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014065Article in journal (Refereed)
    Abstract [en]

    The W source strength in JET H-mode discharges depends on the W sputtering in the inter and the intra-ELM phase due to impinging hydrogenic ions (D or H) and impurities (mainly Be). The analytical approach for interpretation of the Langmuir probe measurements is applied to model the ELM ion parallel transport and the W sputtering flux in intra-ELM and inter-ELM conditions in JET-ITER-like wall (ILW) hydrogen and deuterium plasmas. The impact of the Be ion charge and the Be concentration in the impinging ion flux on the W sputtering was estimated. Be2+ concentrations of 0.5% and 1% in the impinging ion flux increases the W sputtering fluence per ELM by 20%-30% and 35%-55% correspondingly with respect to pure deuterium plasma; the charge state of Be ions has no substantial effect on W sputtering in the intra-ELM phase. The analysis of JET ELMy H-mode discharges in hydrogen with different types of ELMs is presented. The W sputtering source under inter-and intra-ELM conditions is estimated using the analytical approach and validated by optical emission spectroscopy in these discharges. The intra-ELM W sputtering flux increases 2-4 times in comparison to the inter-ELM flux.

  • 37. Bowman, C.
    et al.
    Dickinson, D.
    Horvath, L.
    Lunniss, A. E.
    Wilson, H. R.
    Cziegler, I.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Gibson, K.
    Kirk, A.
    Lipschultz, B.
    Maggi, C. F.
    Roach, C. M.
    Saarelma, S.
    Snyder, P. B.
    Thornton, A.
    Wynn, A.
    Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 1, article id 016021Article in journal (Refereed)
    Abstract [en]

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.

  • 38.
    Bravenec, R.
    et al.
    Fourth State Res, Austin, TX 78701 USA..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al,
    Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and E x B stabilization in JET high-performance discharges2016In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, no 12, article id 125018Article in journal (Refereed)
    Abstract [en]

    Nonlinear gyrokinetic simulations using the GENE code have previously predicted a significant nonlinear enhanced electromagnetic stabilization in certain JET discharges with high neutral-beam power and low core magnetic shear (Citrin et al 2013 Phys. Rev. Lett. 111 155001, 2015 Plasma Phys. Control. Fusion 57 014032). This dominates over the impact of E x B flow shear in these discharges. Furthermore, fast ions were shown to be a major contributor to the electromagnetic stabilization. These conclusions were based on results from the GENE gyrokinetic turbulence code. In this work we verify these results using the GYRO code. Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree for more than one discharge. Otherwise, agreement may simply be fortuitous. Therefore, we analyze three discharges, all with a carbon wall: a simplified, two-species, circular geometry case based on an actual JET discharge; an L-mode discharge with a significant fast-ion pressure fraction; and a low-triangularity high-beta hybrid discharge. All discharges were analyzed at normalized toroidal flux coordinate rho = 0.33 where significant ion temperature peaking is observed. The GYRO simulations support the conclusion that electromagnetic stabilization is strong, and dominates E x B shear stabilization.

  • 39.
    Breton, S.
    et al.
    Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters2018In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 1, article id 012303Article in journal (Refereed)
    Abstract [en]

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schluter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.

  • 40.
    Brunsell, Per
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Volpe, Francesco
    Columbia University, New York, NY, USA.
    Olofsson, Erik
    Columbia University, New York, NY, USA.
    Fridström, Rickard
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Setiadi, Agung Chris
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Resistive Wall Mode Studies utilizing External Magnetic Perturbations2014In: Proceeding of the 25th IAEA Fusion Energy Conference, 2014, article id Paper EX/P4-20Conference paper (Other academic)
  • 41.
    Brunsell, Per
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Volpe, Francesco
    Columbia University, New York, NY, USA.
    Olofsson, Erik
    Columbia University, New York, NY, USA.
    Fridström, Rickard
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Setiadi, Agung Chris
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Resistive Wall Mode Studies utilizing External Magnetic PerturbationsManuscript (preprint) (Other academic)
  • 42.
    Brunsell, Per
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Olofsson, K. Erik J.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Engineering Sciences (SCI), Physics.
    Cecconello, Marco
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Yadikin, D.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Kuldkepp, Mattias
    KTH, School of Engineering Sciences (SCI), Physics.
    Drake, James Robert
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabethth
    KTH, School of Engineering Sciences (SCI), Physics.
    Resistive wall mode feedback control experiments in EXTRAP T2R2007In: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts, 2007, p. 544-547Conference paper (Refereed)
    Abstract [en]

    Experiments in EXTRAP T2R on RWM stabilization using intelligent shell feedback with a P-controller showed that mode suppression improves with increasing gain up to the system stability limit. A PD-controller gives faster response and allows operation with higher gain. The PI-controller is useful for suppression of modes driven by external resonant field error. Best mode suppression was in the present study achieved with a PID-controller.

  • 43. Brunsell, Per R.
    et al.
    Olofsson, K. E. J.
    Frassinetti, L.
    Drake, James R.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response2007In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 14, no 10Article in journal (Refereed)
  • 44. Bucalossi, J.
    et al.
    Neu, R.
    Joffrin, E.
    Lomas, P.
    Nunes, I.
    Rimini, F.
    Beurskens, M.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Baruzzo, M.
    Bourdelle, C.
    Challis, C.
    Coenen, J.
    De Vries, P.
    Dux, R.
    Giroud, C.
    Giruzzi, G.
    Maddison, G.
    Mayoral, M.
    Characterization of the ELMy H-mode regime with the ITER-like wall in JET2012In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics: Volume 1, 2012, 2012, p. 45-48Conference paper (Refereed)
  • 45.
    Bykov, Igor
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Vignitchouk, Ladislas
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Banon, Jean-Philippe
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Bergsåker, Henric
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Brunsell, Per R.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Transport asymmetry and release mechanisms of metal dust in the reversed-field pinch configuration2014In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 56, no 3, p. 035014-Article in journal (Refereed)
    Abstract [en]

    Experimental data on dust resident in the EXTRAP T2R reversed-field pinch are reported. Mobile dust grains are captured in situ by silicon collectors, whereas immobile grains are sampled post mortem from the wall by adhesive tape. The simulation of collection asymmetries by the MIGRAINe dust dynamics code in combination with the experimental results is employed to deduce some characteristics of the mechanism of intrinsic dust release. All evidence suggests that re-mobilization is dominant with respect to dust production.

  • 46. Bílková, P.
    et al.
    Böhm, P.
    Komm, M.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Peterka, M.
    Šos, M.
    Seidl, J.
    Grover, O.
    Havlíček, J.
    Mitošinková, K.
    Varju, J.
    Vondráček, P.
    Urban, J.
    Imríšek, M.
    Markovič, T.
    Weinzettl, V.
    Hron, M.
    Pánek, R.
    Relative shift in position of temperature and density pedestals at the COMPASS tokamak2017In: 44th EPS Conference on Plasma Physics, EPS 2017, European Physical Society (EPS) , 2017Conference paper (Refereed)
  • 47.
    Cannas, Barbara
    et al.
    Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy..
    Pisano, Fabio
    Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Moon, Sunwoo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Pisano, F.
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland..
    et al,
    Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall2019In: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 47, no 4, p. 1871-1877Article in journal (Refereed)
    Abstract [en]

    In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor D-alpha time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the D-alpha radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs.

  • 48.
    Carralero, D.
    et al.
    EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Recent progress towards a quantitative description of filamentary SOL transport2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 5, article id 056044Article in journal (Refereed)
    Abstract [en]

    A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed.

  • 49.
    Carvalho, D. D.
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Plasmas & Fusao Nucl Inst Super Tecn, P-1049001 Lisbon, Portugal.;EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Moon, Sunwoo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland..
    et al,
    Deep neural networks for plasma tomography with applications to JET and COMPASS2019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, article id C09011Article in journal (Refereed)
    Abstract [en]

    Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.

  • 50.
    Cecconello, Marco
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Olofsson, Erik
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Khan, Muhammad Waqas Mehmood
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Brunsell, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Resistive tearing modes dynamics with plasma control in a reversed field pinch2008In: 35th EPS Conference on Plasma Physics 2008, EPS 2008 - Europhysics Conference Abstracts: Volume 32, Issue 1, 2008, p. 429-432Conference paper (Refereed)
1234567 1 - 50 of 383
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf