Endre søk
Begrens søket
1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Badia, J. D.
    et al.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Santonja-Blasco, L.
    Martizez-Felipe, A.
    Ribes-Greus, A.
    Ek, Monica
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Water absorption and hydrothermal performance of PHBV/sisal biocomposites2014Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 108, s. 166-174Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The performance of biocomposites of poly(hydroxybutyrate-co-valerate) (PHBV) and sisal fibre subjected to hydrothermal tests at different temperatures above the glass transition of PHBV (T-H = 26, 36 and 46 degrees C) was evaluated in this study. The influences of both the fibre content and presence of coupling agent were focused. The water absorption capability and water diffusion rate were considered for a statistical factorial analysis. Afterwards, the physico-chemical properties of water-saturated biocomposites were assessed by Fourier-Transform Infrared Analysis, Size Exclusion Chromatography, Differential Scanning Calorimetry and Scanning Electron Microscopy. It was found that the water diffusion rate increased with both temperature and percentage of fibre, whereas the amount of absorbed water was only influenced by fibre content. The use of coupling agent was only relevant at the initial stages of the hydrothermal test, giving an increase in the diffusion rate. Although the chemical structure and thermal properties of water-saturated biocomposites remained practically intact, the physical performance was considerably affected, due to the swelling of fibres, which internally blew-up the PHBV matrix, provoking cracks and fibre detachment.

  • 2. Badia, J. D.
    et al.
    Reig-Rodrigo, P.
    Teruel-Juanes, R.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Prince of Songkla University, Thailand.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ribes-Greus, A.
    Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites2017Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 149, s. 1-10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The dielectric properties of virgin polylactide (PLA) and its reinforced composites with different weight amounts of sisal fibres were assessed at broad temperature (from −130 °C to 130 °C) and frequency ranges (from 10−2–107 Hz), before and after being subjected to accelerated hydrothermal ageing. The synergetic effects of both the loading of sisal and hydrothermal ageing were analysed by means of dielectric relaxation spectra. The relaxation time functions were evaluated by the Havriliak-Negami model, substracting the ohmic contribution of conductivity. The intramolecular and intermolecular relaxations were respectively analysed by means of Arrhenius and Vogel-Fulcher-Tammann-Hesse thermal activation models. The addition of fibre increased the number of hydrogen bonds, which incremented the dielectric permittivity and mainly hindered the non-cooperative relaxations of the biocomposites by increasing the activation energy. Hydrothermal ageing enhanced the formation of the crystalline phase at the so-called transcrystalline region along sisal. This fact hindered the movement of the amorphous PLA fraction, and consequently decreased the dielectric permittivity and increased the dynamic fragility.

  • 3. Badia, J. D.
    et al.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Prince of Songkla University,Thailand.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ribes-Greus, A.
    Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario2017Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 143, s. 9-19Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The eco-design considers the factors to prepare biocomposites under an end-of-life scenario. PLA/sisal biocomposites were obtained from amorphous polylactide and sisal loadings of 10, 20 and 30 wt% with and without coupling agent, and subjected to biodegradation in soil according to standard ISO846. Mass-loss, differential scanning calorimetry and size-exclusion chromatography were used for monitoring biodegradation. A statistical factorial analysis based on the molar mass Mn and crystallinity degree XC pointed out the relevance and interaction of amount of fibre and use of coupling agent with the time of burial in soil. During the preparation of biocomposites, chain scission provoked a similar reduction of Mn for coupled and non-coupled biocomposites. The amount of fibre was relevant for the increase of XC due to the increase of nucleation sites. The coupling agent accelerated the evolution of both factors: reduction of Mn and the consequent increase of XC, mainly during biodegradation in soil. Both factors should be balanced to facilitate microbial assimilation of polymer segments, since bacterial digestion is enhanced by chain scission but blocked by the promotion of crystalline fractions.

  • 4. Gil-Castell, O.
    et al.
    Badia, J. D.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Prince of Songkla University, Thailand.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Skövde University, Sweden.
    Ribes-Greus, A.
    Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites2016Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 °C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 °C, since it represents the extreme degrading condition. The morphology and crystallinity of the biocomposites were evaluated by means of X-Ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The viscoelastic and thermal performance were assessed by means of dynamic mechanic thermal analysis (DMTA) and thermogravimetry (TGA). The presence of sisal generally diminished the thermal stability of the biocomposites, which was mitigated by the addition of the coupling agent. After composite preparation, the effectiveness of the sisal fibre was improved by the crystallisation of PLA around sisal, which increased the storage modulus and reduced the dampening factor. The presence of the coupling agent strengthened this effect. After hydrothermal ageing, crystallisation was promoted in all biocomposites therefore showing more fragile behaviour evidencing pores and cracks. However, the addition of coupling agent in the formulation of biocomposites contributed in all cases to minimise the effects of hydrothermal ageing.

  • 5. Gil-Castell, O.
    et al.
    Badia, J. D.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. Prince of Songkla University Songkhla, Thailand.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Martinez-Felipe, A.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. University of Skövde, Sweden.
    Ribes-Greus, A.
    Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance2014Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 108, s. 212-222Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An accelerated hydrothermal degrading test was designed in order to analyse the synergic effect of water and temperature on PLA/sisal biocomposites with and without coupling agent. As well, the physicochemical properties of biocomposites were monitored along the hydrothermal test by means of Scanning Electron Microscopy, Size Exclusion Chromatography and Differential Scanning Calorimetry. The addition of fibre induced higher water absorption capability and promoted physical degradation, as observed in the surface topography. During the processing of biocomposites and throughout the hydrothermal ageing, a reduction of molecular weight due to chain scission was found. As a consequence, a faster formation of crystalline domains in the PIA matrix occurred the higher the amount of fibre was, which acted as a nucleating agent. Higher crystallinity was considered as a barrier against the advance of penetrant and a reduction in the diffusion coefficient was shown. The addition of coupling agent presented a different influence depending on the composition, showing an inflection point around 20% of sisal fibre.

  • 6.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Tuning the long-term properties to control biodegradation by surface modifications of agricultural fibres in biocomposites2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Sustainable polymeric materials put emphasis on mastering the whole life-cycle of polymeric materials. This includes the choice of raw materials, selection of synthesis and processing, environmental impact during long-term use followed by detailed knowledge about recycling and waste management.  Within this large efforts are put in the design and development of new biocomposites using renewable fibres instead of inert ones. The thesis deals with surface modifications of agricultural fibres and the design of biocomposites with optimal long-term properties balancing the potential risk for biodegradation. 

    The first part of this thesis involved surface modifications of oil palm fibres and production of biocomposites with PP as matrix. The chemical surface modifications of oil palm fibres explored propionylation, PPgMA grafting via solution modification and reactive blending and vinyltrimethoxy silanization as methods. All modified fibre/PP biocomposites showed improvements in the mechanical properties followed also by an improvement of water resistance. In comparison with unmodificed fibres/PP matrix the highest water resistance after the surface modifications of oil palm fibres were observed for silanization followed by PPgMA modified,  PPgMA blending and  propionylation.

    The second part aimed at producing fully biodegradable biocomposites and analysing the resulting properties with respect to potential risk for biodegradation. Sisal fibres were incorporated in PLA and PHBV and the resulting risk for biodegradation using a fungus, Aspergillus niger, monitored. Neat PLA and PHBV were compared with the corresponding biocomposites and already without fibres both polymers were notably biodegraded by Aspergillus niger. The degree of biodegradation of PLA and PHBV matrices was related to the extent of the growth on the material surfaces. Adding sisal fibres gave a substantial increase in the growth on the surfaces of the biocomposites.

    Correlating the type of surface modification of sisal fibres with degree of biodegradation, it was demonstrated that all chemically modified sisal/PLA biocomposites were less biodegraded than unmodified sisal biocomposites.  Propionylated sisal/PLA demonstrated the best resistance to biodegradation of all biocomposites while sisal/CA/PLA demonstrated high level of biodegradation after severe invasion by Aspergillus niger.

    In general, the biodegradation correlated strongly with the degree of water absorption and surface modifications that increase the hydrophobicity is a route to improve the resistance to biodegradation.

    Designing new biocomposites using renewable fibres and non-renewable and renewable matrices involve the balancing of the increase in mechanical properties, after improved adhesion between fibres and the polymer matrix, with the potential risk for biodegradation.

  • 7.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Chemical surface modification of empty fruit bunch oil palm fibre in PP biocomposites2009Konferansepaper (Annet vitenskapelig)
  • 8.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Comparison of Water Uptake as Function of Surface Modification of Empty Fruit Bunch Oil Palm Fibres in PP Biocomposites2013Inngår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 8, nr 2, s. 2998-3016Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Empty fruit bunch oil palm (EFBOP) fibres were surface modified by four different methods, propionylation, vinyltrimethoxy silanization, PPgMA dissolution modification, and PPgMA blending, and integrated into a polypropylene (PP) matrix. The designed biocomposites were subjected to an absorption process at different temperatures. Their water uptake behaviour was compared with the unmodified fibre biocomposites. An increased fibre content and temperature resulted in increased water uptake for all of the biocomposites. The biocomposites containing modified fibres showed a reduction in water uptake, rate of diffusion, sorption, and permeation in comparison with unmodified fibre composites. Comparing the 20 wt% fibre composites at ambient temperature, the performance in water absorption followed the sequence silanization < propionylation < PPgMA dissolution modification < PPgMA blending < no modification. Furthermore, the lowest water absorption was obtained from the silanized fibre/PP composite with 40% fibre content at ambient temperature. Dissolution or blending of PPgMA gave similar water uptake results. The reduction of diffusion, sorption, and permeation confirmed that the modification of fibres was potentially effective at resisting water penetration into the composites.

  • 9.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Effect of surface modifications on microbial growth and biodegradation in sisal/PLA biocomposites2013Manuskript (preprint) (Annet vitenskapelig)
  • 10.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Susceptibility to biodegradation by fungi for sisal/PLA and sisal/PHBV biocomposites2013Manuskript (preprint) (Annet vitenskapelig)
  • 11.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    The effect of surface modifications on the mechanical and thermal properties of empty fruit bunch oil palm fibre PP biocomposites2012Inngår i: Polymers from Renewable Resources, ISSN 2041-2479, Vol. 3, nr 3, s. 79-100Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of this work was to study the effect of chemical surface modifications on empty fruit bunch oil palm fibre/polypropylene composite properties. By FTIR spectra, propionylated fibre and PPgMA-modified fibre showed the presence of a carbonyl group of esters while vinyltrimethoxysilane-treated fibre showed a peak of silicate, confirming that the modifications were successful. PPgMAmodified fibre PP composite at fibre content 20% demonstrated the highest modulus of 0.71 GPa while the modulus of unmodified fibre PP composite was 0.56 GPa. By DSC analysis, PPgMA-modified fibre and vinyltrimethoxysilane-treated fibre PP composite at the same fibre content of 5% showed the highest crystallinity of 46% and 44% respectively whereas unmodified fibre PP composite showed a lower crystallinity of 38%. The DMTA analysis showed that after 60°C, the modified fibre PP composites exhibited a higher stiffness than pure polypropylene.

  • 12.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material. Skövde University.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    The mechanical properties of natural cellulosic fiber/biodegradable polymer biocomposites2011Inngår i: 16th International Symposium on Wood, Fiber and Pulping Chemistry - Proceedings, ISWFPC, 2011, s. 1330-1333Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The aim of this work was to investigate a methodology for the improvement of the mechanical properties of sustainable biodegradable biocomposites based on polylactide (PLA). Cellulosic fibre was incorporated as a reinforcing agent for improvement of the mechanical properties of the biocomposites. A coupling agent was synthesized and employed in order to enhance the interfacial adhesion of two components via a melt blending process. FT-IR spectra showed presences of specific functional groups of maleic anhydride on the backbone of the PLA after the grafting. The modulus of PLA was considerably raised after incorporation of the fibre. Furthermore, an addition of a coupling agent in PLA biocomposites was also able to remarkably increase the stiffness of the material.

  • 13.
    Kittikorn, Thorsak
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    The mechanical properties of natural cellulosic fibre/biodegradable polymer biocomposites2011Inngår i: 16th International Symposium on Wood, Fiber and Pulping Chemistry - Proceedings, ISWFPC: Volume 2, 2011, s. 1330-1333Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Theaim of this work was to investigate a methodology fortheimprovement ofthemechanicalpropertiesof sustainablebiodegradablebiocompositesbased on polylactide (PLA).Cellulosicfibrewas incorporated as a reinforcing agent for improvement ofthemechanicalpropertiesofthebiocomposites. A coupling agent was synthesized and employed in order to enhancetheinterfacial adhesion of two components via a melt blending process. FT-IR spectra showed presences of specific functional groups of maleic anhydride onthebackbone ofthePLA afterthegrafting.Themodulus of PLA was considerably raised after incorporation ofthefibre. Furthermore, an addition of a coupling agent in PLAbiocompositeswas also able to remarkably increasethestiffness ofthematerial.

  • 14. Moliner, C.
    et al.
    Badia, J. D.
    Bosio, B.
    Arato, E.
    Kittikorn, T.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. e Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand .
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Teruel-Juanes, R.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ribes-Greus, A.
    Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites2018Inngår i: Chemical Engineering Communications, ISSN 0098-6445, E-ISSN 1563-5201, Vol. 205, nr 2, s. 226-237Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The decomposition behaviours of composites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and sisal were assessed in terms of thermal stability and decomposition kinetics, under inert and oxidative conditions, by means of multi-rate linear non-isothermal thermogravimetric experiments. A statistical design of experiments was applied to study the influence of the addition of sisal (0–10–20–30%wt), the presence coupling agent (Yes/No) and the applied conditions of work (inert or oxidative). An improvement of the thermal and thermo-oxidative stability of PHBV with the addition of sisal was observed for all cases. An accurate methodology based on iso-conversional methods was applied to simulate the potential of thermal recovery technologies, such as pyrolysis and controlled combustion, to use these biocomposites after the end of their service life. The mathematical descriptions of both thermo-chemical reactions were helpful in the evaluation of the eventual optimal operational conditions to carry out a suitable energetic valorisation. A minimum of 240°C and 137 kJ/mol of activation energy in inert conditions and 236°C and 118 kJ/mol in oxidative conditions ensured the feasibility of the reactions regardless the composition of the PHBV/sisal biocomposites, which may ease the operability of further energy valorisation with the aim to turn biowaste into new fuels.

  • 15.
    Moliner, C.
    et al.
    Univ Genoa, DICCA, Via Opera Pia 15, I-16145 Genoa, Italy.;Univ Politecn Valencia, ITM, Camino Vera S-N, E-46022 Valencia, Spain..
    Badia, J. D.
    Univ Politecn Valencia, ITM, Camino Vera S-N, E-46022 Valencia, Spain.;Univ Valencia, Escola Tecn Super Engn, Dept Engn Quim, Av Univ S-N, E-46100 Burjassot, Spain..
    Bosio, B.
    Univ Genoa, DICCA, Via Opera Pia 15, I-16145 Genoa, Italy..
    Arato, E.
    Univ Genoa, DICCA, Via Opera Pia 15, I-16145 Genoa, Italy..
    Teruel-Juanes, R.
    Univ Politecn Valencia, ITM, Camino Vera S-N, E-46022 Valencia, Spain..
    Kittikorn, Thorsak
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Prince Songkla Univ, Fac Sci, Dept Mat Sci & Technol, Hat Yai 90112, Thailand..
    Strömberg, Emma
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ek, Monica
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Karlsson, Sigbritt
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ribes-Greus, A.
    Univ Politecn Valencia, ITM, Camino Vera S-N, E-46022 Valencia, Spain..
    Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites2018Inngår i: Thermochimica Acta, ISSN 0040-6031, E-ISSN 1872-762X, Vol. 670, s. 169-177Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The thermal stability and decomposition kinetics of PLA/sisal biocomposites was discussed to evaluate the suitability of their use in energy recovery processes such as pyrolysis and combustion. The influence of the addition of sisal up to 30%wt, the presence of coupling agent, and the atmosphere of operation, i.e. inert or oxidative was discussed by means of multi-rate linear non-isothermal thermogravimetric experiments. All biocomposites showed a mean high heating value of 15 MJ/kg indicating their suitability for energy recovery processes. The thermal requirements of PLA/sisal decomposition were assessed in terms of onset decomposition temperature and apparent activation energy. A minimum of 240 degrees C and 174 kJ mol(-1) in inert environment and 225 degrees C and 190 kJ mol(-1) in oxidative environment ensured the feasibility of the reactions regardless the composition of the PLA/sisal biocomposites. The atmosphere of work lead to a greater amount of residue in case of pyrolysis reactions that would need further treatment whereas an oxidative atmosphere resulted in nearly zero final waste stream. The similar kinetics obtained for all samples regardless the amount of sisal or use of coupling agent eases the operability of energy facilities aimed of turning these biowastes into new fuels.

1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf