Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Iovan, Adrian
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Lam, Kanber
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Andersson, Sebastian
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Cherepov, Sergiy
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Haviland, David B.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Korenivski, Vladislav
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Tunneling spectroscopy of magnetic double barrier junctions2007In: IEEE transactions on magnetics, ISSN 0018-9464, E-ISSN 1941-0069, Vol. 43, no 6, p. 2818-2820Article in journal (Refereed)
    Abstract [en]

    Scanning tunneling microscopy (STM) is used to study transport in magnetic double tunnel junctions (DTJs) formed using a fixed transparency barrier of a patterned tunnel junction (TJ), and a variable tunnel barrier between the top electrode of the patterned junction and the STM tip. A sufficiently thin top electrode has been predicted to result in a rectification of charge current through a DTJ when the two barriers have different transparency. Our measurements indeed show a high current rectification ratio for 3-nm-thick, continuous film top electrodes, which is observed for junctions with asymmetric tunnel barriers.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf