Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nilebäck, Linnea
    et al.
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Hedin, Jesper
    Widhe, Mona
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Floderus, Lotta S.
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Krona, Annika
    Bysell, Helena
    Hedhammar, My
    KTH, School of Biotechnology (BIO), Protein Technology. KTH, School of Biotechnology (BIO), Centres, Centre for Bioprocess Technology, CBioPT.
    Self-Assembly of Recombinant Silk as a Strategy for Chemical-Free Formation of Bioactive Coatings: A Real-Time Study2017In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, no 3, p. 846-854Article in journal (Refereed)
    Abstract [en]

    Functionalization of biomaterials with biologically active peptides can improve their performance after implantation. By genetic fusion to self-assembling proteins, the functional peptides can easily be presented on different physical formats. Herein, a chemical-free coating method based on self-assembly of the recombinant spider silk protein 4RepCT is described and used to prepare functional coatings on various biomaterial surfaces. The silk assembly was studied in real-time, revealing the occurrence of continuous assembly of silk proteins onto surfaces and the formation of nanofibrillar structures. The adsorbed amounts and viscoelastic properties were evaluated, and the coatings were shown to be stable against wash with hydrogen chloride, sodium hydroxide, and ethanol. Titanium, stainless steel, and hydroxyapatite were coated with silk fused to an antimicrobial peptide or a motif from fibronectin. Human primary cells cultured on the functional silk coatings show good cell viability and proliferation, implying the potential to improve implant performance and acceptance by the body.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf