Change search
Refine search result
1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Besharat, Zahra
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Göthelid, Mats
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Alvarez Asencio, Ruben.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Yu, Shun
    In-situ evaluation of dye adsorption on TiO2 using QCMManuscript (preprint) (Other academic)
  • 2. D'Amario, Luca
    et al.
    Jiang, Roger
    Cappel, Ute B.
    Gibson, Elizabeth A.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Rensmo, Hakan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hammarstrom, Leif
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 39, p. 33470-33477Article in journal (Refereed)
    Abstract [en]

    The most common material for dye-sensitized photocathodes is mesoporous NiO. We transformed the usual brownish NiO to be more transparent by reducing high valence Ni impurities. Two pretreatment methods have been used: chemical reduction by NaBH4 and thermal reduction by heating. The power conversion efficiency of the cell was increased by 33% through chemical treatment, and an increase in open-circuit voltage from 105 to 225 mV was obtained upon heat treatment. By optical spectroelectrochemistry, we could identify two species with characteristically different spectra assigned to Ni3+ and Ni4+. We suggest that the reduction of surface Ni3+ and Ni (4+) to Ni (2+) decreases the recombination reaction between holes on the NiO surface with the electrolyte. It also keeps the dye firmly on the surface, building a barrier for electrolyte recombination. This causes an increase in open-circuit photovoltage for the treated film.

  • 3.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ellis, Hanna
    Feldt, Sandra
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Convergent/Divergent Synthesis of a Linker-Varied Series of Dyes for Dye-Sensitized Solar Cells Based on the D35 Donor2013In: Advanced Energy Materials, ISSN 1614-6832, Vol. 3, no 12, p. 1647-1656Article in journal (Refereed)
    Abstract [en]

    A series of four new dyes, based on the D35 type donor moiety with varied linker units, is synthesized using a facile convergent/divergent method, enabled by an improved synthesis of the D35 donor. The dyes are evaluated in dye sensitized solar cells with Co(II/III)(bpy)(3)-based electrolytes. By extending the linker fragment, higher photocurrents and solar energy conversion efficiencies are achieved. It is also found that the linker unit plays a crucial role in maintaining a high open-circuit photovoltage. Based on the photovoltaic performance it is concluded that the hexylthiophene unit is the most suitable for this purpose, as it allows further enhancement of the already high open-circuit voltage of D35 to 0.92 V. The best dye in this series reaches an efficiency of 6.8%.

  • 4.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Eriksson, Susanna K.
    Gao, Jiajia
    Chen, Hong
    Li, Fusheng
    Oscarsson, Johan
    Sun, Juliang
    Resmo, Håkan
    Kloo, lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Dipicolinic Acid: A Strong Anchoring Group with Tunable Redoxand Spectral Behavior for Stable Dye-Sensitized Solar CellsManuscript (preprint) (Other academic)
  • 5.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Uppsala University, Sweden.
    Eriksson, Susanna K.
    Gao, Jiajia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Chen, Hong
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Oscarsson, Johan
    Sun, Junliang
    Rensmo, Håkan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    Dipicolinic acid: a strong anchoring group with tunable redox and spectral behavior for stable dye-sensitized solar cells2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 18, p. 3858-3861Article in journal (Refereed)
    Abstract [en]

    Dipicolinic acidwas investigated as a new anchoring group for DSSCs. A pilot dye (PD2) bearing this new anchoring group was found to adsorb significantly stronger to TiO2 than its cyanoacrylic acid analogue. The electrolyte composition was found to have a strong effect on the photoelectrochemical properties of the adsorbed dye in the device, allowing the dye LUMO energy to be tuned by 0.5 eV. Using a pyridine-free electrolyte, panchromatic absorption of the dye on TiO2 extending to 900 nm has been achieved. Solar cells using PD2 and a Co(bpy)(3) based electrolyte showed unique stability under simulated sunlight and elevated temperatures.

  • 6.
    Gorlov, Mikhail
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Lindborg, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Karlsson, Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Optimization of dye-sensitized solar cells based on organic dyes2010In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 239Article in journal (Other academic)
  • 7. Hao, Yan
    et al.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cong, Jiayan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Yang, Wenxing
    Bora, Ilkay
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. University of Stuttgart, Germany.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    Hagfeldt, Anders
    Triphenylamine Groups Improve Blocking Behavior of Phenoxazine Dyes in Cobalt-Electrolyte-Based Dye-Sensitized Solar Cells2014In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 15, no 16, p. 3476-3483Article in journal (Refereed)
    Abstract [en]

    Novel phenoxazine dyes are successfully introduced as sensitizers into dye-sensitized solar cells (DSCs) with cobalt-based electrolyte. In sensitizers with triphenylamine (TPA) groups recombination from electrons in the TiO2 conduction band to the cobalt(III) species is suppressed. The effect of the steric properties of the phenoxazine sensitizers on the overall device performance and on recombination and regeneration processes is compared. Optimized DSCs sensitized with IB2 having two TPA groups in combination with tris(2,2'-bipyridyl) cobalt( II/III) yield efficiencies of 6.3 %, similar to that of IB3, which is equipped with mutiple alkoxy groups. TH310 with only one TPA group gives lower efficiency and open circuit voltage, while IB1 without TPA groups performs even worse. These results demonstrate that both TPA groups on the IB2 are needed for an efficient blocking effect. These results reveal a possible new role for TPA units in DSC sensitizer design.

  • 8.
    Hua, Yong
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors2016In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 7, no 4, p. 2633-2638Article in journal (Refereed)
    Abstract [en]

    Hole-transport materials (HTMs) play an important role as hole scavenger materials in the most efficient perovskite solar cells (PSCs). Here, for the first time, two Ag-based metal organic complexes (HA1 and HA2) are employed as a new class of dopant-free hole-transport material for application in PSCs. These HTMs show excellent conductivity and hole-transport mobility. Consequently, the devices based on these two HTMs exhibit unusually high fill factors of 0.76 for HA1 and 0.78 for HA2, which are significantly higher than that obtained using spiro-OMeTAD (0.69). The cell based on HA1-HTM in its pristine form achieved a high power conversion efficiency of 11.98% under air conditions, which is comparable to the PCE of the cell employing the well-known doped spiro-MeOTAD (12.27%) under the same conditions. More importantly, their facile synthesis and purification without using column chromatography makes these new silver-based HTMs highly promising for future commercial applications of PSCs. These results provide a new way to develop more low-cost and high conductivity metal-complex based HTMs for efficient PSCs.

  • 9.
    Karlsson, Karl Martin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Jiang, Xiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Modifying the Energy Levels in Phenoxazine Based Sensitizers for Dye Sensitized Solar CellsManuscript (preprint) (Other academic)
  • 10. Li, Ling
    et al.
    Hao, Yan
    Yang, Xichuan
    Zhao, Jianzhang
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Teng, Chao
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    A Double-Band Tandem Organic Dye-sensitized Solar Cell with an Efficiency of 11.5%2011In: CHEMSUSCHEM, ISSN 1864-5631, Vol. 4, no 5, p. 609-612Article in journal (Refereed)
  • 11. Li, Ling
    et al.
    Yang, Xichuan
    Gao, Jiajia
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhao, Jianzhang
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte2011In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, no 22, p. 8458-8460Article in journal (Refereed)
    Abstract [en]

    A modified polysulfide redox couple, [(CH(3))(4)N](2)S/[(CH(3))(4)N](2)S(n), in an organic solvent (3-methoxypropionitrile) was employed in CdS quantum dot (QD)-sensitized solar cells (QDSSCs), and an unprecedented energy conversion efficiency of up to 3.2% was obtained under AM 1.5 G illumination. The QDs were linked to nanoporous TiO(2) via covalent bonds by using thioglycolic acid, and chemical bath deposition in an organic solvent was then used to prepare the QDSSCs, facilitating high wettability and superior penetration capability of the TiO(2) films. A very high fill factor of 0.89 was observed with the optimized QDSSCs.

  • 12.
    Marinado, Tannia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Brinck, Tore
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    Yang, Xixhuan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Energy level tuning of organic dyes for fundamental studies of the oxide/dye/electrolyte interface in solar cellsManuscript (Other academic)
  • 13.
    Ning, Zhijun
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Qin, Haiyan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Fu, Ying
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Wave-Function Engineering of CdSe/CdS Core/Shell Quantum Dots for Enhanced Electron Transfer to a TiO2 Substrate2010In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 35, p. 15184-15189Article in journal (Refereed)
    Abstract [en]

    In this paper, we have synthesized a series of core/shell quantum dots (QDs) for the purpose of enhancing the electron transfer from the dots to a TiO2 substrate. We make use of the fact that CdSe is a small-bandgap material compared with CdS; therefore, in a common CdSe/CdS core/shell QD, the photo-excited electron is confined deeply in the CdSe core. By special construction of the CdS/CdSe core/shell QDs, referred as reversed type-I, the electron wave function will distribute largely in the shell region. This facilitates the transfer of the electron from the QD to the TiO2 substrate, resulting in significantly improved electron-injection efficiency. Such an enhanced electron-injection efficiency was confirmed by fluorescence lifetime decay measurements, showing the largest lifetime reduction after that the QDs were adsorbed on the TiO2 surface. The reversed type-I CdS/CdSe QDs show a much higher photon-to-current conversion efficiency than type-I CdSe/CdS and CdSe QDs without shell. Furthermore, by chemical-bath depositing of CdS on the QD-sensitized electrode to form a quantum-well structure, the electron recombination between the QDs and the redox couple was reduced, hence further enhancing the electron-injection efficiency. The absorbed-photon-to-current efficiency of the quantum well CdS/CdSe/CdS sensitized solar cells reaches a value as high as 60%.

  • 14.
    Ning, Zhijun
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Yuan, Chunze
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Fu, Ying
    KTH, School of Biotechnology (BIO).
    Qin, Haiyan
    KTH, School of Biotechnology (BIO).
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots2011In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 47, no 5, p. 1536-1538Article in journal (Refereed)
    Abstract [en]

    Type-II quantum dots (QDs) were applied for QDs-sensitized solar cells for the first time and showed prominent absorbed photon to current conversion efficiency.

  • 15.
    Ning, Zhijun
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Yuan, Chunze
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Fu, Ying
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Pure Organic Redox Couple for Quantum-Dot-Sensitized Solar Cells2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 23, p. 6330-6333Article in journal (Refereed)
  • 16.
    Ning, Zhijun
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Yuan, Chunze
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Fu, Ying
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Li, Lin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 13, p. 6032-6037Article in journal (Refereed)
    Abstract [en]

    In this paper, one kind of organic electrolyte based on tetramethylthiourea is employed for quantum dot sensitized solar cells (QDSCs). By reducing the impedance between the electrolyte and the counter electrode, the fill factor of such organic electrolyte based QDSCs is significantly improved. It is possible to substantially increase the photovoltage and to reach an efficiency three times higher than that of a commonly used inorganic electrolyte. The light harvesting ability of the organic electrolyte based QDSCs is successfully extended by using type-II QDs, where the adsorption of ZnS gives an additional advantage in further enhancing the stability of the cells. It is observed that core/shell ZnSe/CdS type-II QDs give higher electron injection than CdS/ZnSe QDs, proving that the electron distribution in the QDs is important for the electron extraction. A full working mechanism of the organic redox couple for the QDSCs is proposed.

  • 17.
    Ning, Zhijun
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Yuan, Chunze
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Quantum rod-sensitized solar cells2011In: ChemSusChem, ISSN 1864-5631, Vol. 4, no 12, p. 1741-1744Article in journal (Refereed)
    Abstract [en]

    An electron injection highway: CdSe nanorods with CdS seed material were applied to a quantum rod-sensitized TiO 2 solar cell that showed a higher electron injection efficiency than analogous quantum dot-sensitized solar cells: reducing the nanocrystals carrier confinement dimensions can improve electron injection efficiency of nanocrystal-sensitized solar cells.

  • 18.
    Sheibani, Esmaeil
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Univ Isfahan, Iran.
    Zhang, Lei
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Mijangos, Edgar
    Boschloo, Gerrit
    Hagfeldt, Anders
    Hammarstrom, Leif
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Uppsala University, Sweden.
    A study of oligothiophene-acceptor dyes in p-type dye-sensitized solar cells2016In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 22, p. 18165-18177Article in journal (Refereed)
    Abstract [en]

    Two new dyes, E1 and E2, equipped with triphenylamine as the electron donor, oligothiophene as the linker and different electron acceptor groups, have been designed and synthesized as photosensitizers for p-type dye-sensitized solar cells (p-DSCs). A systematic study of the effect of molecular structures on the observed photophysical properties, the electron/hole recombination process, the overall performance and the interfacial charge separation was carried out. Transient absorption spectroscopy (TAS) shows that the E1 dye with a napthoilene-1,2-benzimidazole (NBI) unit as the acceptor has a longer lifetime in the reduced state than the E2 dye with a malononitrile subunit on the NiO surface.

  • 19.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Bora, Ilkay
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Jiang, Xiao
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells2011In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 21, no 33, p. 12462-12472Article in journal (Refereed)
    Abstract [en]

    Four organic dyes bearing the phenoxazine chromophore have been synthesized and applied in dye-sensitized solar cells (DSCs). The effect of different dye structures on the performance of the DSCs was investigated systematically with photophysical, photovoltaic as well as photoelectrochemical methods. Due to the slow recombination process between injected electrons and electrolyte, the IB3 dye with two 2,4-dibutoxyphenyl units showed the best efficiency of 7.0% under 100 mW cm(-2) light illumination in the liquid state-DSCs. Moreover, the phenoxazine dyes-based solid state-DSCs were fabricated for the first time. With the IB4 dye, a higher efficiency of 3.2% has been achieved under the same light intensity.

  • 20.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Lohse, Peter William
    Vlachopoulos, Nick
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 12, p. 9752-9755Article in journal (Refereed)
    Abstract [en]

    A water-soluble organic redox couple (TT-/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.

  • 21.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Yu, Ze
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes2011In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 47, no 36, p. 10124-10126Article in journal (Refereed)
    Abstract [en]

    The ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate, was employed to prepare a thiolate/disulfide ionic liquid electrolyte with low viscosity for organic dye-sensitized solar cells (DSCs). CoS was introduced and showed better photovoltaic performance in DSCs than the ubiquitous platinized FTO CE.

  • 22.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Jiang, Xiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Yu, Ze
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte2010In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 49, no 40, p. 7328-7331Article in journal (Refereed)
  • 23.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Oscarsson, Johan
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Eriksson, Susanna K.
    Lindblad, Rebecka
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hao, Yan
    Boschloo, Gerrit
    Johansson, Erik M. J.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hagfeldt, Anders
    Rensmo, Håkan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor2014In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 4, p. 4282-Article in journal (Refereed)
    Abstract [en]

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced V-oc from the Co2+/(3+)(dtbp)(3)-based device is due to the positive E-F shift of NiO.

  • 24.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Soto, Andrea
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    Fabregat-Santiago, Francisco
    Mora-Sero, Ivan
    Kang, Yong Soo
    Bisquert, Juan
    Barea, Eva M.
    Effect of the chromophores structures on the performance of solid-state dye sensitized solar cells2014In: Nano, ISSN 1793-2920, Vol. 9, no 5, p. 1440005-Article in journal (Refereed)
    Abstract [en]

    The er effect of metal-free chromophores on dye-sensitized solar cell performance is investigated. Solid state dye-sensitized solar cells (ssDSCs) using dirfferent molecular sensitizers based on tri-phenylamine (TPA) with thiophene linkers and different alkyl chain in the donor unit have been characterized using impedance spectroscopy (IS). We show that different molecular structures play a fundamental role on solar cell performance, by the effect produced on TiO2 conduction band position and in the recombination rate. Dye structure and its electronic properties are the main factors that control the recombination, the capacitance and the efficiency of the cells. A clear trend between the performance of the cell and the optimization level of the blocking effect of the dye structure has been identified in the solid state solar cells with Spiro-OMeTAD hole conductor.

  • 25.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Iodine-free redox couples for dye-sensitized solar cells2011In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 21, no 29, p. 10592-10601Article in journal (Refereed)
    Abstract [en]

    Redox couples, as one of the crucial components of dye-sensitized solar cells, have been investigated for many years. Due to the many drawbacks of I I(-)/I(3)(-) electrolyte, scientists have paid more attention to seeking other alternative electrolyte systems. Up to now, the best efficiency of iodine-free redox couple-based DSCs, 7.5%, has been achieved by ferrocene/ferrocenium redox couple under AM 1.5G, 100mW cm(-2) light illumination and other redox couples also show the promising future in DSCs. In this feature article, we systematically present three series of iodine-free redox couples including metal-complexes, inorganic and pure organic redox couples, and further compare the different photovoltaic and photophysical properties of these redox couples. As a consequence, the goals of this article are to show the important progress achieved in the redox couples research area of DSCs and analyze the advantages as well as the disadvantages of these redox couples to speed up the further development of iodine-free redox couples in the future.

  • 26.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Chen, Hong
    Johansson, Erik M. J.
    Boschloo, Gerrit
    Solid-State Perovskite-Sensitized p-Type Mesoporous Nickel Oxide Solar Cells2014In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 7, no 8, p. 2150-2153Article in journal (Refereed)
    Abstract [en]

    ,Perovskite has been adopted as photosensitizer to develop solid state p-type mesoporous nickel oxide (NiO) dye-sensitized solar cells (DSCs) employing PCBM as electron conductor. The optimal device achieved an efficiency of 1.5% with an impressive open circuit voltage of more than 800 mV, which is the record of solar cell based on p-type mesoporous NiO electrode. This result shows the potential for building highly efficient p-type NiO solar cells as stand-alone device.

  • 27.
    Tian, Haining
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Yu, Ze
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Hagfeldt, Anders
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells2011In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, no 24, p. 9413-9422Article in journal (Refereed)
    Abstract [en]

    A series of organic thiolate/disulfide redox couples have been synthesized and have been studied systematically in dye-sensitized solar cells (DSCs) on the basis of an organic dye (TH305). Photophysical, photoelectrochemical, and photovoltaic measurements were performed in order to get insights into the effects of different redox couples on the performance of DSCs. The polymeric, organic poly(3,4-ethylenedioxythiophene) (PEDOT) material has also been introduced as counter electrode in this kind of noniodine-containing DSCs showing a promising conversion efficiency of 6.0% under AM 1.5G, 100 mW.cm(-2) light illumination. Detailed studies using electrochemical impedance spectroscopy and linear-sweep voltammetry reveal that the reduction of disulfide species is more efficient on the PEDOT counter electrode surface than on the commonly used platinized conducting glass electrode. Both pure and solvated ionic-liquid electrolytes based on a thiolate anion have been studied in the DSCs. The pure and solvated ionic-liquid-based electrolytes containing an organic redox couple render efficiencies of 3.4% and 1.2% under 10 mW.cm(-2) light illumination, respectively.

  • 28.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sheibani, Esmaeil
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Zhang, Jinbao
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Uppsala University, Sweden.
    Vlachopoulos, Nick
    Boschloo, Gerrit
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT)Dalian, China .
    Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 38, p. 6629-6634Article in journal (Refereed)
    Abstract [en]

    (Graph Presented) Two carbazole-based small molecule hole-transport materials (HTMs) are synthesized and investigated in solid-state dye-sensitized solar cells (ssDSCs) and perovskite solar cells (PSCs). The HTM X51-based devices exhibit high power conversion efficiencies (PCEs) of 6.0% and 9.8% in ssDSCs and PSCs, respectively. These results are superior or comparable to those of 5.5% and 10.2%, respectively, obtained for the analogous cells using the state-of-the-art HTM Spiro-OMeTAD.

  • 29.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Bi, Dongqin
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Erik M. J.
    Boschloo, Gerrit
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye2013In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 1, no 46, p. 14467-14470Article in journal (Refereed)
    Abstract [en]

    A low-cost and easily-synthesized organic hole transport material (HTM) X3 bearing triphenylamine units and an organic dye was utilized for solid state dye sensitized solar cells (ssDSCs), which have achieved the power conversion efficiencies of 5.8% and 7.1% under 1 sun and 0.46 sun, respectively, outperforming the ssDSC based on Spiro-OMeTAD 5.4% (1 sun) and 6.4% (0.46 sun).

  • 30.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Uppsala University, Sweden.
    Lin, Lili
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. Shandong Normal University, China.
    Qian, Deping
    Chen, Hong
    Zhang, Jinbao
    Vlachopoulos, Nick
    Boschloo, Gerrit
    Luo, Yi
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhang, Fengling
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
    Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells2015In: Advanced Energy Materials, ISSN 1614-6832, Vol. 5, no 3, article id 1401185Article in journal (Refereed)
    Abstract [en]

    A series of triphenylamine-based small molecule organic hole transport materials (HTMs) with low crystallinity and high hole mobility are systematically investigated in solid-state dye-sensitized solar cells (ssDSCs). By using the organic dye LEG4 as a photosensitizer, devices with X3 and X35 as the HTMs exhibit desirable power conversion efficiencies (PCEs) of 5.8% and 5.5%, respectively. These values are slightly higher than the PCE of 5.4% obtained by using the state-of-the-art HTM Spiro-OMeTAD. Meanwhile, transient photovoltage decay measurement is used to gain insight into the complex influences of the HTMs on the performance of devices. The results demonstrate that smaller HTMs induce faster electron recombination in the devices and suggest that the size of a HTM plays a crucial role in device performance, which is reported for the first time.

  • 31. Yang, Lei
    et al.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Bi, Dongqin
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Boschloo, Gerrit
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    Johansson, Erik M. J.
    Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells2013In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 19, p. 7378-7385Article in journal (Refereed)
    Abstract [en]

    Efficient solid state dye-sensitized solar cells (sDSCs) were obtained using a small hole transport material, MeO-TPD (N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine), after an initial light soaking treatment. It was discovered that the light soaking treatment for the MeO-TPD based solar cells is essential in order to achieve the high efficiency (4.9%), which outperforms spiro-OMeTAD based sDSCs using the same dye and device preparation parameters. A mechanism based on Li+ ion migration is suggested to explain the light soaking effect. It was observed that the electron lifetime for the MeO-TPD based sDSC strongly increases after the light soaking treatment, which explains the higher efficiency. After the initial light soaking treatment the device efficiency remains considerably stable with only 0.2% decrease after around 1 month (unsealed cells stored in dark).

  • 32.
    Yu, Ze
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Boschloo, Gerrit
    Uppsala University, Sweden.
    Gorlov, Mikhail
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Tetrathiafulvalene as a one-electron iodine-free organic redox mediator in electrolytes for dye-sensitized solar cells2012In: RSC Advances, ISSN 2046-2069, Vol. 2, no 3, p. 1083-1087Article in journal (Refereed)
    Abstract [en]

    Tetrathiafulvalene (TTF) was investigated as an organic iodine-free redox mediator in electrolytes for dye-sensitized, nanocrystalline solar cells (DSCs) and was compared to the commonly used iodide/triiodide system. The TTF system studied was determined to be a one-electron transfer system, although potentially exhibiting three well-defined oxidation states. Despite the slightly positive redox potential of TTF, electrolytes with TTF displayed around 200 mV lower open-circuit voltage than the iodide/triiodide system. This can mainly be ascribed to a much shorter electron lifetime in the TiO2 film. Mass transport limitations for redox species in TTF-based electrolytes were found to be serious. Electrochemical impedance measurements (EIS) show that the charge-transfer resistance at the counter electrode in the electrolyte with TTF is considerably larger than for the iodide/triiodide system. In addition, the light absorption of the TTF-based electrolyte is stronger than that for the iodide/triiodide system. Thus, DSCs with TTF-based electrolytes show worse photovoltaic performance than those with iodide/triiodide-based electrolytes. The differences in IV characteristics and charge-recombination behavior have also been elucidated.

  • 33.
    Yuan, Chunze
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Chen, Guanying
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Prasad, Paras N.
    Ohulchanskyy, Tymish Y.
    Ning, Zhijun
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 33, p. 16709-16713Article in journal (Refereed)
    Abstract [en]

    Colloidal upconversion (UC) nanocrystals were explored as energy relay materials for dye-sensitized solar cells for the first time. The utilization of colloidal UC nanocrystals was found to significantly enhance the upconversion efficiency and improve the photocurrent of the cells for low infrared irradiation intensity. In addition, it was found that UC nanocrystals of small size favor infiltration into a TiO2 film and bring higher relay efficiency. Finally, we found that UC nanocrystals can serve as a scattering material to increase the light absorption capability of the cells and increase the overall photocurrent of the cells under simulated sunlight irradiation.

  • 34. Ziolek, Marcin
    et al.
    Karolczak, Jerzy
    Zalas, Maciej
    Hao, Yan
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Douhal, Abderrazzak
    Aggregation and Electrolyte Composition Effects on the Efficiency of Dye-Sensitized Solar Cells. A Case of a Near-Infrared Absorbing Dye for Tandem Cells2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 1, p. 194-205Article in journal (Refereed)
    Abstract [en]

    Time-resolved laser spectroscopy studies of complete solar cells sensitized with a near-infrared absorbing dye (HY103) and filled with different electrolytes are applied to explain their macroscopic parameters (efficiency and short-circuit current). Particular attention is paid to the effect of coadsorbent, size of cations in electrolyte (lithium vs guanidine ones), and addition of tert-butylpyridine. A complete deactivation scheme in the cell is revealed, and the rates of electron injection and all other processes are explored. For the most efficient electrolyte, the electron injection rate constants are 0.21 ps(-1) from monomers and 0.07 ps(-1) from H-aggregates. Moreover, two important and novel findings are revealed: energy transfer from the excited state of monomers to H-aggregates (with rate constants from 0.04 to 0.25 ps(-1)) and the decrease of internal conversion rate in HY103 attached to the nanoparticles (0.01 ps(-1)) with respect to that of free dye in solution (0.06 ps(-1)). Thus, our study gives more clues to better understand the photobehavior of dye-sensitized solar cells.

1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf