Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jöns, Klaus D.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Schweickert, Lucas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Versteegh, Marijn A. M.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Dalacu, D.
    Poole, P. J.
    Gulinatti, A.
    Giudice, A.
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Reimer, M. E.
    Erratum to: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality (Scientific Reports, (2017), 7, 1, (1700), 10.1038/s41598-017-01509-6)2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, no 1, article id 7751Article in journal (Refereed)
  • 2.
    Jöns, Klaus D.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Nano Photonics. Delft University of Technology, Netherlands.
    Schweickert, Lucas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Nano Photonics. Delft University of Technology, Netherlands.
    Versteegh, Marijn A. M.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Nano Photonics. Delft University of Technology, Netherlands.
    Dalacu, Dan
    Poole, Philip J.
    Gulinatti, Angelo
    Giudice, Andrea
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum Nano Photonics. Delft University of Technology, Netherlands.
    Reimer, Michael E.
    Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, no 1, article id 1700Article in journal (Refereed)
    Abstract [en]

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect similar to 200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S-CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 +/- 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.

  • 3.
    Schweickert, Lucas
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Jöns, Klaus D.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Lettner, Thomas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Zeuner, Katharina
    Zichi, Julien
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Elshaari, Ali W.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Fognini, A.
    Zadeh, I. E.
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Generating, manipulating and detecting quantum states of light at the nanoscale2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We generate, manipulate and detect light at the single photon level with semiconducting and superconducting nanowires.

  • 4.
    Schweickert, Lucas
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Jöns, Klaus D.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Zeuner, Katharina D.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    da Silva, Saimon Filipe Covre
    Huang, Huiying
    Lettner, Thomas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Reindl, Marcus
    Zichi, Julien
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Trotta, Rinaldo
    Rastelli, Armando
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    On-demand generation of background-free single photons from a solid-state source2018In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 112, no 9, article id 093106Article in journal (Refereed)
    Abstract [en]

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g((2)) (0) = (7.5 +/- 1.6) x 10(-5) without any background subtraction or data processing. To this date, this is the lowest value of g((2)) (0) Peported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 +/- 0.0007) s(-1) and (0.017 +/- 0.001) s(-1), respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  • 5.
    Schöll, Eva
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Hanschke, Lukas
    Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Schweickert, Lucas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Zeuner, Katharina D.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Reindl, Marcus
    Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria..
    da Silva, Saimon Filipe Covre
    Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria..
    Lettner, Thomas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Trotta, Rinaldo
    Sapienza Univ Roma, Dipartimento Fis, Piazzale A Moro 1, I-00185 Rome, Italy..
    Finley, Jonathan J.
    Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Mueller, Kai
    Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Rastelli, Armando
    Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria..
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Jöns, Klaus D.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.
    Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability2019In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, no 4, p. 2404-2410Article in journal (Refereed)
    Abstract [en]

    Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on demand. One promising candidate is strain free GaAs/A1GaAs quantum dots obtained by aluminum droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V-raw = (95.0(-6.1)(+5.0))%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g., as quantum light sources for quantum repeater architectures.

  • 6.
    Zeuner, Katharina D.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Paul, Matthias
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Lettner, Thomas
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Reuterskiold Hedlund, Carl
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Schweickert, Lucas
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Steinhauer, Stephan
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Yang, Lily
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zichi, Julien
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Hammar, Mattias
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Jöns, Klaus D.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zwiller, Val
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band2018In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 112, no 17, article id 173102Article in journal (Refereed)
    Abstract [en]

    The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 mu m with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths. 

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf