Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lakshmanan, Ramnath
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology (closed 20130101).
    Okoli, Chuka
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology. KTH, School of Biotechnology (BIO), Bioprocess Technology (closed 20130101).
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Bioprocess Technology (closed 20130101).
    Effect of Magnetic Iron Oxide Nanoparticles for Surface Water Treatment: Trace Minerals and MicrobesManuscript (preprint) (Other academic)
  • 2.
    Lakshmanan, Ramnath
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes2013In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 129, p. 612-615Article in journal (Refereed)
    Abstract [en]

    The existing water treatment process often uses chemicals, which is of high health and environmental concern. The present study focused on the efficiency of microemulsion prepared magnetic iron oxide nanoparticles (ME-MIONs) and protein-functionalized nanoparticles (MOCP. +. ME-MIONs) in water treatment. Their influence on mineral ions and microorganisms present in the surface water from lake Brunnsviken and örlången, Sweden were investigated. Ion analysis of water samples before and after treatment with nanoparticles was performed. Microbial content was analyzed by colony forming units (CFU/ml). The results impart that ME-MIONs could reduce the water turbidity even in low turbid water samples. Reduction of microbial content (98%) was observed at 37 °C and more than 90% reduction was seen at RT and 30 °C when compared to untreated samples from lake örlången. The investigated surface water treatment method with ME-MIONs was not significantly affecting the mineral ion composition, which implies their potential complement in the existing treatment process.

  • 3.
    Lakshmanan, Ramnath
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Microemulsion prepared magnetic nanoparticles for phosphate removal: Time efficient studies2014In: Journal of Environmental Chemical Engineering, ISSN 2213-3437, Vol. 2, no 1, p. 185-189Article in journal (Refereed)
    Abstract [en]

    The present study investigates the effective removal of phosphate in sewage wastewater using magnetic iron oxide nanoparticles (MION). The microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) of around 7-10 nm was synthesized using water-in-oil microemulsion method. The interaction of ME-MION and phosphate was studied using In situ FT-IR technique. Batch experiments were carried out with wastewater to determine the conc. and time efficiency using ME-MION for removal of phosphate. The vibration peak at 1004 cm-1 and the presence of hydroxyl group (OH-) at 3673 cm-1 confirms the binding of phosphate to ME-MION. ME-MION with 0.44 g L-1 exhibited more than 95% phosphate reduction in 5 min and close to 100% in 20 min. Conversely the experimental data obtained has been fitted with Langmuir isotherm model and also exhibited high correlation coefficients. The ME-MION was regenerated and can be reused for minimum 5 consecutive times. Efficient and fast reduction of phosphate was attained while the recovery of nanoparticles was achieved by an external magnetic field. To the author's knowledge, this is the first report that underscores around 100% phosphate removal from wastewater using ME-MION in 20 min. The approach utilized in this study offers a potential technique in the reduction of phosphate in wastewater whilst, reducing the time and reuse of nanoparticles.

  • 4.
    Lakshmanan, Ramnath
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Rajaraman, P.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Application of magnetic nanoparticles for wastewater treatment using response surface methodology2013In: Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013: Volume 3, 2013, 2013, p. 690-693Conference paper (Refereed)
    Abstract [en]

    Nanotechnology is considered as one of the key techniques that provide unique materials with high reactivity due to large surface to volume ratio and which could address the fundamental issues in water sector and environment. The present study investigates the efficiency of magnetic iron oxide nanoparticles in wastewater treatment based on Central Composite Face centered (CCF) matrix of response surface methodology for the reduction of turbidity and total nitrogen. The multiple linear regression fit (MLR) obtained for turbidity (r2 0.97) and total nitrogen reduction (r 0.94) supports the future predictions obtaining a significant model. The maximum reduction of turbidity and total nitrogen achieved was 93% and 41% respectively. Other contaminants such as color, total organic carbon, nitrate and microbial content could be reduced. The present study reveals that magnetic property, time and reduction of pollutants by magnetic nanoparticles could impart an efficient treatment process.

  • 5.
    Lakshmanan, Ramnath
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Rajaraman, Premanand
    Sri Sairam Engineering College, Department of Physics.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Boutonnet, Magali
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Järås, Sven
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Application of Magnetic Nanoparticles for the removal of turbidity and total nitrogen from sewage wastewater: Modelling studiesManuscript (preprint) (Other academic)
  • 6.
    Okoli, Chuka
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology. KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Development of Protein-Functionalized Magnetic Iron Oxide Nanoparticles: Potential Application in Water Treatment2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The treatment of water to make it safe for human consumption is a problem of immense concern, both in developing and developed countries. However, the production of clean water with chemicals as coagulants has several drawbacks associated with cost, health risks and complexity in sludge management. The application of nanotechnology in water treatment is a fast growing discipline proposed as an efficient alternative that will combat these hurdles. The aim of this thesis is to develop new water treatment strategies in a more eco-friendly manner based on a bottom-up approach using: (i) a natural coagulant protein from Moringa oleifera purified with nanoscale magnetic iron oxide nanoparticles for in situ treatment; and (ii) a protein-functionalized nanoparticle (MOCP-MNPs) system by means of binding the coagulant protein onto the nanoparticles in order to develop a potential reusable water treatment process.

    Magnetic iron oxide nanoparticles with different surface chemistry have been prepared from co-precipitation in aqueous solution and (water-in-oil and oil-in-water) microemulsion methods.  

    The prepared nanoparticles were studied in terms of size, morphology, magnetic behavior, structure, surface area including surface chemical structure and charges using different techniques such as TEM, VSM/SQUID, XRD, BET, FT-IR and zeta potential. The prepared nanoparticles exhibited a size ranging from 2-30 nm with superparamagnetic properties. The Moringa oleifera  coagulant protein (MOCP) with known molecular mass (6.5 kDa) was purified from the crude Moringa oleifera (MO) seed extracts using nanoparticles prepared from both methods. The obtained MOCP exhibits comparable coagulation activity with alum in terms of water turbidity removal, implying alternative replacement to chemical coagulants. This technique can be easily applied where natural materials are available locally.

    Studies on the interaction between MOCP and surface modified nanoparticles were essential to understand the binding mechanism for the development of a protein-functionalized nanoparticle. Based on in silico investigation, the overall molecular docking studies reveal the interactions between protein-ligand complexes by electrostatic, van der Waals and hydrogen-bonding; which imply, that there are at least two binding sites is i.e. one located at the core binding site (TEOS and APTES ligand) while the other located at the side chain residues (TSC and Si60-OH).

    This work underscores advancement in the development and use of MOCP-MNPs for potential water treatment. About 70% turbidity removal was achieved gravimetrically using MOCP-MNPs (60 min) in high and low turbid waters, whereas alum requires 180 min to reduce the turbidity especially in low turbid waters. The turbidity removal efficiency was enhanced by the use of MOCP-MNPs under the influence of an external magnetic field. More than 95% turbidity removal was achieved within 12 min in high and low turbid waters when MOCP-MNPs were used. The combination of natural coagulant protein and magnetic nanoparticles as well as the use of applied magnetic field enhanced the performance coagulating/flocculating properties in the water samples.

    These results suggest a successful development of MOCP-MNPs as demonstrated in the regeneration study. The data shown in this work represent novel potential water treatment strategies that could be cost-effective, simple, robust and environmentally friendly whilst utilizing biocompatible materials. 

  • 7.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Rajarao-Kuttuva, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology. Albanova University Center, Sweden.
    Protein-functionalized magnetic iron oxide nanoparticles: Time efficient potential-water treatment2014In: Nanotechnology for Sustainable Development, First Edition, Springer, 2014, p. 127-136Chapter in book (Other academic)
    Abstract [en]

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the MEMION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing withmild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  • 8.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Rajarao-Kuttuva, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment2012In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 14, no 10, p. 1194-Article in journal (Refereed)
    Abstract [en]

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO? ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MIONby washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  • 9.
    Okoli, Chuka
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology. KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Mariey, Laurence
    Spectrochemistry, ENSICAEN, France.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification2011In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 86, no 11, p. 1386-1393Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Magnetic nanoparticles are of immense interest for their applications in biotechnology. This paper reports the synthesis of magnetic iron oxide nanoparticles from two different water-in-oil microemulsion systems (ME-MIONs), their characterization and also their use in purification of coagulant protein. RESULTS: ME-MIONs have demonstrated to be an efficient binder in the purification of Moringa oleifera protein when compared with the superparamagnetic iron oxide nanoparticles prepared from coprecipitation in aqueous media. The size and morphology of the ME-MIONs were studied by transmission electron microscopy (TEM) while the structural characteristics were studied by X-ray diffraction (XRD). The microemulsion magnetic iron oxide nanoparticles (ME 1-MION and ME 2-MION) obtained have a size range 7-10 nm. The protein and ME-MIONs interaction was investigated by Fourier transform infrared spectroscopy (FT-IR); the presence of three peaks at 2970, 2910 and 2870 cm(-1) respectively, confirms the binding of the protein. The purification and molecular weight of the coagulant protein was 6.5 kDa as analyzed by SDS-PAGE. CONCLUSION: The ME-MIONs have the advantage of being easily tailored in size, are highly efficient as well as magnetic, cost effective and versatile; they are, thus, very suitable for use in a novel purification technique for protein or biomolecules that possess similar characteristics to the Moringa oleifera coagulant protein.

  • 10.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology. KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Fornara, Andrea
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Qin, Jian
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Dalhammar, Gunnel
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Characterization of Superparamagnetic Iron Oxide Nanoparticles and Its Application in Protein Purification2011In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 11, no 11, p. 10201-10206Article in journal (Refereed)
    Abstract [en]

    The application of surface modified magnetic adsorbent particles in combination with magnetic separation techniques has received considerable awareness in recent years. There is a particular need in protein purification and analysis for specific, functional and generic methods of protein binding on solid supports. Nanoscale superparamagnetic iron oxide particles have been used to purify a natural coagulant protein extracted from Moringa oleiferaseeds. Spectrophotometric analysis of the coagulant protein was performed using synthetic clay solution as substrate. Protein binding with carboxyl and silica surface modified superparamagnetic iron oxide nanoparticles (SPION) were compared with the known carboxyl methyl cellulose (CMC) beads of ∼1 m. SPION modified with carboxyl surface showed higher binding capacity towards the coagulant protein compared to the CMC beads. The high surface area to volume ratio of the carboxyl-coated SPION resulted in high binding capacity and rapid adsorption kinetics of the crude protein extract. The purification and molecular weight of coagulant protein is analyzed by SDS-PAGE. This approach utilizes the most efficient, feasible and economical method of coagulant protein purification and it can also be applicable to other proteins that possess similar properties.

  • 11.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Sanchez-Dominguez, Margarita
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Civera, Concepción
    Solans, Conxita
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Comparison and Functionalization Study of Microemulsion-Prepared Magnetic Iron Oxide Nanoparticles2012In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, no 22, p. 8479-8485Article in journal (Refereed)
    Abstract [en]

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 rim were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization similar to 35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  • 12.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Sengottiyan, Selvaraj
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Natarajan Arul, Murugan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Pavankumar, Asalapuram Ramachand
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    In silico modeling and experimental evidence of coagulant protein interaction with precursors for nanoparticle functionalization2013In: Journal of Biomolecular Structure and Dynamics, ISSN 0739-1102, E-ISSN 1538-0254, Vol. 31, no 10, p. 1182-1190Article in journal (Refereed)
    Abstract [en]

    The design of novel protein-nanoparticle hybrid systems has applications in many fields of science ranging from biomedicine, catalysis, water treatment, etc. The main barrier in devising such tool is lack of adequate information or poor understanding of protein-ligand chemistry. Here, we establish a new strategy based on computational modeling for protein and precursor linkers that can decorate the nanoparticles. Moringa oleifera (MO2.1) seed protein that has coagulation and antimicrobial properties was used. Superparamagnetic nanoparticles (SPION) with precursor ligands were used for the protein-ligand interaction studies. The molecular docking studies reveal that there are two binding sites, one is located at the core binding site; tetraethoxysilane (TEOS) or 3-aminopropyl trimethoxysilane (APTES) binds to this site while the other one is located at the side chain residues where trisodium citrate (TSC) or Si-60 binds to this site. The protein-ligand distance profile analysis explains the differences in functional activity of the decorated SPION. Experimentally, TSC-coated nanoparticles showed higher coagulation activity as compared to TEOS- and APTES-coated SPION. To our knowledge, this is the first report on in vitro experimental data, which endorses the computational modeling studies as a powerful tool to design novel precursors for functionalization of nanomaterials; and develop interface hybrid systems for various applications.

  • 13.
    Pavankumar, Asalapuram R.
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Kayathri, Rajarathinam
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Murugan, Natarajan Arul
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Srivastava, Vaibhav
    KTH, School of Biotechnology (BIO), Glycoscience.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Rajarao, Gunaratna K.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation2014In: Journal of Biomolecular Structure and Dynamics, ISSN 0739-1102, E-ISSN 1538-0254, Vol. 32, no 3, p. 406-415Article in journal (Refereed)
    Abstract [en]

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  • 14.
    Pavankumar, Asalapuram Ramachand
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    kayathri, Rajarathinam
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Murugan, Natarajan Arul
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Dimerization of flocculent protein from Moringa oleifera: experimental evidence and in silico interpretationArticle in journal (Refereed)
    Abstract [en]

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf