Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlsson, Allan
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Kvick, Mathias
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Evaluation of steerable filter for detection of fibres in flowing suspensions2011In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 51, no 4, p. 987-996Article in journal (Refereed)
    Abstract [en]

    Steerable filters are concluded to be useful in order to determine the orientation of fibers captured in digital images. The fiber orientation is a key variable in the study of flowing fiber suspensions. Here, digital image analysis based on a filter within the class of steerable filters is evaluated for suitability of finding the position and orientation of fibers suspended in flowing suspensions. In sharp images with small noise levels, the steerable filter succeeds in determining the orientation of artificially generated fibers with well-defined angles. The influence of reduced image quality on the orientation has been quantified. The effect of unsharpness and noise is studied and the results show that the error in orientation is less than 1° for moderate levels. Images from two flow cases, one laminar shear flow and one turbulent, are also analyzed. The fiber orientation distribution is determined in the flow-vorticity plane. For the laminar case a comparison is made to a robust, but computationally more expensive, method involving convolutions with an oriented elliptic filter. A good agreement is found when comparing the resulting fiber orientation distributions obtained with the two methods. For the turbulent case, it is demonstrated that correct results are obtained and that the method can handle overlapping fibers. 

  • 2.
    Hamedi, Mahiar M.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fall, Andreas B.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes2014In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 8, no 3, p. 2467-2476Article in journal (Refereed)
    Abstract [en]

    It is challenging to obtain high-quality dispersions of single-wall nanotubes (SWNTs) in composite matrix materials, in order to reach the full potential of mechanical and electronic properties. The most widely used matrix materials are polymers, and the route to achieving high quality dispersions of SWNT is mainly chemical functionalization of the SWNT. This leads to increased cost, a loss of strength and lower conductivity. In addition full potential of colloidal self-assembly cannot be fully exploited in a polymer matrix. This may limit the possibilities for assembly of highly ordered structural nanocomposites. Here we show that nanofibrillated cellulose (NFC) can act as an excellent aqueous dispersion agent for as-prepared SWNTs, making possible low-cost exfoliation and purification of SWNTs with dispersion limits exceeding 40 wt %. The NFC:SWNT dispersion may also offer a cheap and sustainable alternative for molecular self-assembly of advanced composites. We demonstrate semitransparent conductive films, aerogels and anisotropic microscale fibers with nanoscale composite structure. The NFC:SWNT nanopaper shows increased strength at 3 wt % SWNT, reaching a modulus of 133 GPa, and a strength of 307 MPa. The anisotropic microfiber composites have maximum conductivities above 200 S cm(-1) and current densities reaching 1400 A cm(-2).

  • 3.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 24, p. 18601-18608Article in journal (Refereed)
    Abstract [en]

    In order to utilize the high strength (ultimate tensile strength = 3 GPa) [Saito et al., Biomacromolecules, 2012, 14, 248] and stiffness (Young's modulus = 130 GPa) [Sakurada et al., J. Polym. Sci., 1962, 57, 651] of cellulose nanofibrils in a macroscopic material or composite, the structure of the elongated fibrils in the material must be controlled. Here, cellulose nanofibrils in a dispersed state are partly aligned in a flow focusing device, whereafter the anisotropic nano-structure is locked by a dispersion-gel transition. The alignment process has been studied by Hakansson et al., [Nat. Commun., 2014, 5, 4018], however, the location of the phase transition as well as at which alignment (anisotropy) the fibrils were locked was not investigated. In this study, the degree of alignment is determined with small angle X-ray scattering experiments and the location of the phase change is measured with polarized light experiments. Furthermore, the anisotropy of the hydrogel thread is determined and the thread is seen to still be anisotropic after six months in a water bath.

  • 4.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.
    Orientation of elongated, macro and nano-sized particles in macroscopic flows2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Non-spherical particles are present all around us, in biological, industrial and environmental processes. Making predictions of their impact on us and systems in our vicinity can make life better for everyone here on earth. For example, the ash particles from a volcano eruption are non-spherical and their spreading in the atmosphere can hugely impact the air traffic, as was also proven in 2010. Furthermore, the orientation of the wood fibres in a paper sheet influences the final properties of the paper, and the cause of a specific fibre orientation can be traced back to the fluid flows during the manufacturing process of the paper.

    In this thesis, experimental and numerical work is presented with the goal to understand and utilize the behavior of elongated particles in fluid flows. Two different experimental setups are used. The first one, a turbulent half channel flow, aims at increasing the understanding of how particles with non-zero inertia behave in turbulence. The second setup is an attempt to design a flow field with the purpose to align nanofibrils and create high performance cellulose filaments.

    Experiments were performed in a turbulent half channel flow at different flow set- tings with dilute suspensions of cellulose acetate fibres having three different aspect ratios (length to width ratio). The two main results were firstly that the fibres agglom- erated in streamwise streaks, believed to be due to the turbulent velocity structures in the flow. Secondly, the orientation of the fibres was observed to be determined by the aspect ratio and the mean shear, not the turbulence. Short fibres were oriented in the spanwise direction while long fibres were oriented in the streamwise direction.

    In order to utilize the impressive properties (stiffness comparable to Kevlar) of the cellulose nanofibril in a macroscopic material, the alignment of the fibrils must be controlled. Here, a flow focusing device (resulting in an extensional flow), designed to align the fibrils, is used to create a cellulose filament with aligned fibrils. The principle is based on a separation of the alignment and the assembly of the fibrils, i.e. first align the fibrils and then lock the aligned structure. With this process, continuous filaments were created, with properties similar to that of the wood fibre at the same fibril alignment. However, the highest alignment (lowest angle) of the fibrils in a filament created was only 31o from the filament axis, and the next step is to increase the alignment. This thesis includes modeling of the alignment process with the Smoluchowski equation and a rotary diffusion. Finding a model that correctly describes the alignment process should in the end make it possible to create a filament with fully aligned fibrils.

  • 5.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.
    Orientation of elongated particles in shear and extensional flow2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Elongated particles in fluid flows are a big part of the world we are living in. Gaining knowledge on how particles behave in different fluid flows can potentially increase the efficiency of industrial processes and decrease the world's energy consumption as well as improve the properties of future materials.

    In this thesis, the orientation of elongated particles in two different flows are studied. The first case is a dilute fibre suspension in a turbulent flow and the second case is a semi-dilute fibril dispersion in a laminar flow. The fibres (cellulose acetate) are at least three orders of magnitude larger than the fibrils (nano-fibrillated cellulose).

    The turbulent flow case is half of a full channel flow, characterised by the friction Reynolds number, and is experimentally examined. This experiment is closely related to the papermaking process. Laser Doppler velocimetry measurements are preformed without fibres in order to make sure that the flow is turbulent and fully developed. Images of the fibres in the flow are acquired using a CCD-camera, from which it is possible to detect the fibres in an image processing step and extract both the positions and orientations of the fibres. A large parameter study is carried out, where the aspect ratio of the fibres, concentration and Reynolds number are changed. Short fibres are observed to align perpendicular to the flow, while the longer fibres are found to align in the flow direction. The fibres are also seen to accumulate in streamwise streaks, believed to be caused by velocity structures in the turbulent flow.

    The second flow case studied focusses on a semi-dilute dispersion in a laminar flow. It includes both experiments and numerical calculations of the fibril orientation. The aim of this study is to demonstrate that it is possible to control the fibril orientation with a fluid. In a semi-dilute dispersion, fibrils are interacting. However, no flocs or networks are formed. A flow focusing apparatus is used in order to hydrodynamically accelerate the dispersion with an outer fluid (sheath) flow. The mean orientation in the flow direction is experimentally studied by detecting the birefringence of the flowing dispersion. The orientation distribution is calculated by solving the Smoluchowski equation. The fibrils are seen to align in the flow direction both in the experiments and the calculations. Moreover, the alignment is found to increase with increasing acceleration.

  • 6.
    Håkansson, Karl
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Fall, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Yu, Sun
    DESY, Hamburg Germany.
    Krywka, Christina
    Institute of experimental and applied physics. Kiel Germany.
    Roth, Stephan
    DESY, Hamburg Germany.
    Santoro, Gonzalo
    DESY, Hamburg Germany.
    Kvick, Mathias
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Innventia AB, Stockholm Sweden.
    Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments2014In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, p. 4018-Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion-gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved.

  • 7.
    Håkansson, Karl
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Kvick, Mathias
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Measurement of width and streakiness of particle streaks in turbulent flowsArticle in journal (Other academic)
  • 8.
    Håkansson, Karl
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Fall, Andreas B.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Continuous assembly of aligned nanofibrils into a micro filamentManuscript (preprint) (Other academic)
  • 9.
    Håkansson, Karl
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Alignment of cellulose nanofibrils in a flow focusing device: mea-surements and calculations of flow and orientationManuscript (preprint) (Other academic)
  • 10.
    Håkansson, Karl
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Orientation of nano-fibrillated cellulose in accelerated flowManuscript (preprint) (Other academic)
  • 11.
    Håkansson, Karl M. O.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Kvick, Mathias
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, L. Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Measurement of width and intensity of particle streaks in turbulent flows2013In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 54, no 6, p. 1555-Article in journal (Refereed)
    Abstract [en]

    Fibre streaks are observed in experiments with fibre suspensions in a turbulent half-channel flow. The preferential concentration methods, most commonly used to quantify preferential particle concentration, are in one dimension found to be concentration dependent. Two different new streak quantification methods are evaluated, one based on Voronoi analysis and the other based on artificial particles with an assigned fixed width. The width of the particle streaks and a measure of the intensity of the streaks, i.e. streakiness, are sought. Both methods are based on the auto-correlation of a signal, generated by summing images in the direction of the streaks. Common for both methods is a severe concentration dependency, verified in experiments keeping the flow conditions constant while the (very dilute) concentration of fibres is altered. The fixed width method is shown to be the most suitable method, being more robust and less computationally expensive. By assuming the concentration dependence to be related to random noise, an expression is derived, which is shown to make the streak width and the streakiness independent of the concentration even at as low concentrations as 0.05 particles per pixel column in an image. The streakiness is obtained by applying an artificial particle width equal to 20 % of the streak width. This artificial particle width is in this study found to be large enough to smoothen the correlation without altering the streakiness nor the streak width. It is concluded that in order to make quantitative comparisons between different experiments or simulations, the evaluation has to be performed with care and be very well documented.

  • 12.
    Håkansson, Karl M. O.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl-Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, L. Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanofibril Alignment in Flow Focusing: Measurements and Calculations2016In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 120, no 27, p. 6674-6686Article in journal (Refereed)
    Abstract [en]

    Alignment of anisotropic supermolecular building blocks is crucial to control the properties of many novel materials. In this study, the alignment process of cellulose nanofibrils (CNFs) in a flow-focusing channel has been investigated using small-angle X-ray scattering (SAXS) and modeled using the Smoluchowski equation, which requires a known flow field as input. This flow field was investigated experimentally using microparticle-tracking velocimetry and by numerically applying the two-fluid level set method. A semidilute dispersion of CNFs was modeled as a continuous phase, with a higher viscosity as compared to that of water. Furthermore, implementation of the Smoluchowski equation also needed the rotational Brownian diffusion coefficient, which was experimentally determined in a shear viscosity measurement. The order of the nanofibrils was found to increase during extension in the flow-focusing channel, after which rotational diffusion acted on the orientation distribution, driving the orientation of the fibrils toward isotropy. The main features of the alignment and dealignment processes were well predicted by the numerical model, but the model overpredicted the alignment at higher rates of extension. The apparent rotational diffusion coefficient was seen to increase steeply as the degree of alignment increased. Thus, the combination of SAXS measurements and modeling provides the necessary framework for quantified studies of hydrodynamic alignment, followed by relaxation toward isotropy.

  • 13.
    Kvick, Mathias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Fibre orientation and fibre streaks in turbulent wall bounded flowManuscript (preprint) (Other academic)
  • 14.
    Kvick, Mathias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Söderberg, Daniel
    Innventia.
    Prahl Wittberg, Lisa
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Fibre streaks in wall turbulent flow2010In: 7th Int. Conference on Multiphase Flow, Tampa, Florida, USA, may 30 - June 4, 2010, ICMF , 2010Conference paper (Refereed)
  • 15.
    Mittal, Nitesh
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Biotechnology (BIO), Protein Technology. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Jansson, Ronnie
    KTH, School of Biotechnology (BIO), Protein Technology.
    Widhe, Mona
    KTH, School of Biotechnology (BIO), Protein Technology.
    Benselfelt, Tobias
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Håkansson, Karl M. O.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Biotechnology (BIO), Protein Technology. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hedhammar, My
    KTH, School of Biotechnology (BIO), Protein Technology.
    Söderberg, Daniel
    KTH, School of Biotechnology (BIO), Protein Technology. KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Ultrastrong and Bioactive Nanostructured Bio-Based Composites2017In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 11, no 5, p. 5148-5159Article in journal (Refereed)
    Abstract [en]

    Nature’s design of functional materials relies on smart combinations of simple components to achieve desired properties. Silk and cellulose are two clever examples from nature–spider silk being tough due to high extensibility, whereas cellulose possesses unparalleled strength and stiffness among natural materials. Unfortunately, silk proteins cannot be obtained in large quantities from spiders, and recombinant production processes are so far rather expensive. We have therefore combined small amounts of functionalized recombinant spider silk proteins with the most abundant structural component on Earth (cellulose nanofibrils (CNFs)) to fabricate isotropic as well as anisotropic hierarchical structures. Our approach for the fabrication of bio-based anisotropic fibers results in previously unreached but highly desirable mechanical performance with a stiffness of ∼55 GPa, strength at break of ∼1015 MPa, and toughness of ∼55 MJ m–3. We also show that addition of small amounts of silk fusion proteins to CNF results in materials with advanced biofunctionalities, which cannot be anticipated for the wood-based CNF alone. These findings suggest that bio-based materials provide abundant opportunities to design composites with high strength and functionalities and bring down our dependence on fossil-based resources.

  • 16.
    Rosén, Tomas
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Mechanics.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Håkansson, Karl M. O.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Roth, Stephan
    Zhang, Peng
    Iwamoto, Hiroyuki
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Mechanics.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    On the applicability of time-resolved synchrotron X-ray techniques for studying rotary diffusion of dispersed cellulose nanofibrilsManuscript (preprint) (Other academic)
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf