Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Birchall, Sarah
    et al.
    BSRIA.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Högskolan Dalarna, Sweden.
    Wallis, Ian
    BSRIA.
    Dipasquale, Chiara
    EURAC.
    Bellini, Alessandro
    EURAC.
    Fedrizzi, Roberto
    EURAC.
    Survey and simulation of energy use in the European building stock2016Conference paper (Refereed)
    Abstract [en]

    Buildings account for around 40% of the final energy consumption in Europe and are central in the work towards increased energy efficiency. In order to plan and perform effective energy renovation of the buildings, it is necessary to have adequate information on the current status of the buildings in terms of architectural features and energy needs. Unfortunately, the official statistics do not include all of the needed information for the whole building stock.

     

    This paper aims to fill the gaps in the statistics by gathering data from studies, projects and national energy agencies, and by calibrating TRNSYS models against the existing data to complete missing energy demand data, for countries with similar climate, through simulation. The survey was limited to residential and office buildings in the EU member states (before July 2013). This work was carried out as part of the EU FP7 project iNSPiRe.

     

    The building stock survey revealed over 70% of the residential and office floor area is concentrated in the six most populated countries. The total energy consumption in the residential sector is 14 times that of the office sector. In the residential sector, single family houses represent 60% of the heated floor area, albeit with different share in the different countries, indicating that retrofit solutions cannot be focused only on multi-family houses.

     

    The simulation results indicate that residential buildings in central and southern European countries are not always heated to 20 °C, but are kept at a lower temperature during at least part of the day. Improving the energy performance of these houses through renovation could allow the occupants to increase the room temperature and improve their thermal comfort, even though the potential for energy savings would then be reduced.

  • 2.
    Dermentzis, Georgios
    et al.
    University of Innsbruck.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Högskolan Dalarna.
    Ochs, Fabian
    University of Innsbruck.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Feist, Wolfgang
    Passivhaus Institut.
    Calabrese, Toni
    University of Innsbruck.
    Oberrauch, Philipp
    University of Innsbruck.
    Evaluation of a versatile energy auditing tool2016Conference paper (Refereed)
    Abstract [en]

    Energy auditing can be an important contribution for identification and assessment of energy conservation measures (ECMs) in buildings. Numerous tools and software have been developed, with varying degree of precision and complexity and different areas of use.

     

    This paper evaluates PHPP as a versatile, easy-to-use energy auditing tool and gives examples of how it has been compared to a dynamic simulation tool, within the EU-project iNSPiRe. PHPP is a monthly balance energy calculation tool based on EN13790. It is intended for assisting the design of Passive Houses and energy renovation projects and as guidance in the choice of appropriate ECMs.

     

    PHPP was compared against the transient simulation software TRNSYS for a single family house and a multi-family house. It should be mentioned that dynamic building simulations might strongly depend on the model assumptions and simplifications compared to reality, such as ideal heating or real heat emission system. Setting common boundary conditions for both PHPP and TRNSYS, the ideal heating and cooling loads and demands were compared on monthly and annual basis for seven European locations and buildings with different floor area, S/V ratio, U-values and glazed area of the external walls.

     

    The results show that PHPP can be used to assess the heating demand of single-zone buildings and the reduction of heating demand with ECMs with good precision. The estimation of cooling demand is also acceptable if an appropriate shading factor is applied in PHPP. In general, PHPP intentionally overestimates heating and cooling loads, to be on the safe side for system sizing. Overall, the agreement with TRNSYS is better in cases with higher quality of the envelope as in cold climates and for good energy standards. As an energy auditing tool intended for pre-design it is a good, versatile and easy-to-use alternative to more complex simulation tools.

  • 3.
    Dipasquale, Chiara
    et al.
    EURAC.
    Fedrizzi, Roberto
    EURAC.
    Bellini, Alessandro
    EURAC.
    Ochs, Fabian
    University of Innsbruck.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Bales, Chris
    Högskolan Dalarna, Energiteknik.
    Sié, Marion
    Cycleco.
    Energetic, economic and environmental analysis of energy renovation packages for residential and office building stock: methodologyManuscript (preprint) (Other academic)
    Abstract [en]

    The high energy consumption in the residential and office sectors requires the individuation of renovation solutions that can be widely applied on different building typologies and climates. Several tools and methodologies are nowadays available both for the assessment of building demands and for individuating the optimal retrofit solution, but usually they are not user-friendly or applicable to a cluster of buildings.

    In this context, this paper aims at describing a methodology developed to generate a matrix of solutions for typical building and HVAC systems in different climatic conditions. The results are collected in a database. The studied building typologies concern single family houses, multi-family houses and offices. Envelope renovation measures are firstly applied in order to reduce the building demands; afterwards, efficient HVAC systems are implemented. Air-to-water heat pump, ground source heat pump, condensing and pellet boilers are studied. The contribution of solar technologies, thermal panels and PV is also accounted for. Per building typology, climate and renovation package, the database reports energetic, economic and environmental indicators. The database is available on-line, it can be consulted by researchers or technicians of the retrofit sector for comparing different renovation packages and helping during the decision making process.

  • 4.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Energy efficient and economic renovation of residential buildings with low-temperature heating and air heat recovery2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools.

    Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW.

    Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.

  • 5.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Högskolan Dalarna.
    Energy Efficient Renovation Strategies for Swedish and Other European Residential and Office Buildings2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The high energy use in the European building stock is attributable to the large share of old buildings with poor energy performance. Energy renovation of buildings is therefore vital in the work towards energy efficiency and reduced environmental impact in the EU. Yet, the strategies and energy system implications of this work have not been made clear, and the rate of building renovation is currently very low.

    The aim of this thesis is to investigate the economic and environmental aspects of energy renovation strategies, with two main objectives:

    • Renovation of Swedish district heated multi-family houses, including life-cycle cost and environmental analysis and impact on the local energy system;

    • Renovation of European residential and office buildings, including life-cycle cost and environmental analysis and influence of climatic conditions.

    Buildings typical for the respective regions and the period of construction 1945-1970 were simulated, in order to determine the feasibility and energy saving potential of energy renovation measures in European climates. A variety of systems for heating, cooling and ventilation were studied, as well as solar energy systems, with focus on heat pumps, district heating, low-temperature heating systems and air heat recovery.

    Compared to normal building renovation, energy renovation can often reduce the life-cycle costs and environmental impact. In renovation of typical European office buildings, as well as Southern European multi-family houses, more ambitious renovation levels can also be more profitable.

    Exhaust air heat pumps can be cost-effective complements in district heated multi-family houses, while ventilation with heat recovery is more expensive but also more likely to reduce the primary energy use. From a system perspective, simple exhaust ventilation can reduce the primary energy use in the district-heating plant as much as an exhaust air heat pump, due to the lower electricity use.

  • 6.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems. Högskolan Dalarna.
    Bales, Chris
    Högskolan Dalarna.
    Myhren, Jonn Are
    Högskolan Dalarna.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems.
    Techno-economic analysis of three HVAC retrofitting options2014Conference paper (Refereed)
    Abstract [en]

    Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger.

    The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17.

    In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand.

    It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.

  • 7.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems. Högskolan Dalarna.
    Dermentzis, Georgios
    University of Innsbruck.
    Myhren, Jonn Are
    Högskolan Dalarna.
    Bales, Chris
    Högskolan Dalarna.
    Ochs, Fabian
    Univeristy of Innsbruck.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems.
    Feist, Wolfgang
    Energy performance comparison of three innovative HVAC systems for renovation through dynamic simulation2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 82, p. 512-519Article in journal (Refereed)
    Abstract [en]

    In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

  • 8.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Dalarna University, Sweden.
    Dipasquale, C.
    Poppi, Stefano
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. Högskolan Dalarna, Sverige.
    Bellini, A.
    Fedrizzi, R.
    Bales, C.
    Ochs, F.
    Sié, M.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Economic and environmental analysis of energy renovation packages for European office buildings2017In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 148, p. 155-165Article in journal (Refereed)
    Abstract [en]

    A large share of the buildings in Europe are old and in need of renovation, both in terms of functional repairs and energy efficiency. While many studies have addressed energy renovation of buildings, they rarely combine economic and environmental life cycle analyses, particularly for office buildings. The present paper investigates the economic feasibility and environmental impact of energy renovation packages for European office buildings. The renovation packages, including windows, envelope insulation, heating, cooling and ventilation systems and solar photovoltaics (PV), were evaluated in terms of life cycle cost (LCC) and life cycle assessment (LCA) through dynamic simulation for different European climates. Compared to a purely functional renovation, the studied renovation packages resulted in up to 77% lower energy costs, 19% lower total annualized costs, 79% lower climate change impact, 89% lower non-renewable energy use, 66% lower particulate matter formation and 76% lower freshwater eutrophication impact over a period of 30 years. The lowest total costs and environmental impact, in all of the studied climates, were seen for the buildings with the lowest heating demand. Solar PV panels covering part of the electricity demand could further reduce the environmental impact and, at least in southern Europe, even reduce the total costs.

  • 9.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Dipasquale, Chiara
    EURAC.
    Poppi, Stefano
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. Högskolan Dalarna.
    Bellini, Alessandro
    EURAC.
    Fedrizzi, Roberto
    EURAC.
    Bales, Chris
    Högskolan Dalarna, Energiteknik.
    Ochs, Fabian
    University of Innsbruck.
    Sié, Marion
    Cycleco.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Economic and environmental analysis of energy renovation measures for European office buildingsManuscript (preprint) (Other academic)
    Abstract [en]

    A large share of the buildings in Europe are old and in need of renovation, both in terms of functional repairs and energy efficiency. While many studies have addressed energy renovation of buildings, they rarely combine economic and environmental life cycle analyses, particularly for office buildings. The present paper investigates the economic feasibility and environmental impact of energy renovation packages for European office buildings. The renovation packages, including windows, envelope insulation, heating, cooling and ventilation systems and solar photovoltaics (PV), were evaluated in terms of life cycle cost (LCC) and life cycle assessment (LCA) through dynamic simulation for different European climates. Compared to a purely functional renovation, the studied renovation packages resulted in up to 77% lower energy costs, 19% lower total annualized costs, 79% lower climate change impact, 89% lower non-renewable energy use, 66% lower particulate matter formation and 76% lower freshwater eutrophication impact over a period of 30 years. The lowest total costs and environmental impact, in all of the studied climates, were seen for the buildings with the lowest heating demand. Solar PV panels covering part of the electricity demand could further reduce the environmental impact and, at least in southern Europe, even reduce the total costs.

  • 10.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Högskolan Dalarna.
    Myhren, Jonn Are
    Högskolan Dalarna.
    Bales, Chris
    Högskolan Dalarna.
    Comparison of two HVAC renovation solutions: A case study2013In: CLIMA 2013, Prague, June 16-19, 2013, 2013Conference paper (Refereed)
    Abstract [en]

    Within the aging building stock of Europe, there is great potential of saving energy through renovation and upgrading to modern standards, and to thereby approach the internationally set goals of lower energy use. This paper concerns the planned renovation of the building envelope and HVAC systems in a multi-family house in Ludwigsburg, Germany. Five systemic HVAC solutions were compared, with special focus on two systems: A) Balanced ventilation with HRC + Micro heat pump, and B) Forced exhaust ventilation + Heat pump with exhaust air HRC + Ventilation radiators. Given the predicted heating demand and ventilation rate of the house after renovation, the performance of the two systems was compared, alongside three common systems for reference. Calculations were made using TMF Energi, a tool developed by SP Technical Research Institute of Sweden.

    Both systems A and B were found to have the lowest electrical energy use together with the ground source heat pump system for the assumed conditions. For other assumptions, including different climate and degree of insulation, some differences between these three systems were noted. Most significant is the increased electrical use of system B for higher heating loads due to limitations in the power available from the heat source, exhaust air, which is dependent on the ventilation rate.

  • 11.
    Gustafsson, Marcus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Dalarna University, Sweden.
    Swing Gustafsson, Moa
    Högskolan Dalarna, Energiteknik; Mälardalens Högskola.
    Myhren, Jonn Are
    Högskolan Dalarna, Byggteknik.
    Bales, Chris
    Högskolan Dalarna, Energiteknik.
    Holmberg, Sture
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Techno-economic analysis of energy renovation measures for a district heated multi-family house2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 177, p. 108-116Article in journal (Refereed)
    Abstract [en]

    Renovation of existing buildings is important in the work towards increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO₂ emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump.

    Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO₂ emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the heat pump by up to 11% and reduced the environmental impact.

  • 12. Lidberg, T.
    et al.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Dalarna University, Sweden.
    Myhrén, J. A.
    Olofsson, T.
    Trygg, L.
    Comparing Different Building Energy Efficiency Refurbishment Packages Performed Within Different District Heating Systems2017In: 8th International Conference on Applied Energy, ICAE 2016; Beijing; China; 8 October 2016 through 11 October 2016, Elsevier, 2017, Vol. 105, p. 1719-1724Conference paper (Refereed)
    Abstract [en]

    This study analyses the differences in primary energy (PE) use of a multi-family building refurbished with different refurbishment packages situated in different district heating systems (DHS). Four models of typical DHS are defined to represent the Swedish DH sector. The refurbishment packages are chosen to represent typical, yet innovative ways to improve the energy efficiency of a representative multi-family building in Sweden. The study was made from a broad system perspective, including valuation of changes in electricity use on the margin. The results show a significant difference in PE savings for the different refurbishment packages, depending on both the package itself as well as the type of DHS. Also, the package giving the lowest specific energy use per m2 was not the one which saved the most PE.

  • 13.
    Lidberg, Tina
    et al.
    Högskolan Dalarna.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.
    Myhren, Jonn Are
    Högskolan Dalarna, Byggteknik.
    Olofsson, Thomas
    Högskolan Dalarna, Umeå Universitet.
    Trygg, Louise
    Linköpings Universitet.
    Environmental impact of energy refurbishment of buildings within different district heating systemsManuscript (preprint) (Other academic)
    Abstract [en]

    Refurbishment of existing buildings is often considered a way to reduce the energy use and CO₂ emissions of the building stock. This study analyses the primary energy and CO₂ impact of refurbishing a multi-family house with different refurbishment packages, given various district heating systems. Four models of typical district heating systems were defined to represent the Swedish district heating sector. The refurbishment packages were chosen to represent typical, yet innovative ways, to improve the energy efficiency and indoor climate of a representative multi-family house in Sweden. The study was made from a system perspective, including valuation of changes in electricity use on the margin. The results show a significant difference in primary energy use for the different refurbishment packages, depending on both the package itself as well as the type of district heating system. While the packages with heat pumps had the lowest final energy use per m² floor area, air heat recovery proved to reduce the primary energy use and emissions of CO₂-equivalents more, independent of the type of district heating system, as it leads to a smaller increase of the electricity use.

  • 14. Swing Gustafsson, M.
    et al.
    Gustafsson, Marcus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology. Dalarna University, Sweden.
    Myhren, J. A.
    Dotzauer, E.
    Primary energy use in buildings in a Swedish perspective2016In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 130, p. 202-209Article in journal (Refereed)
    Abstract [en]

    The building sector accounts for a large part of the energy use in Europe and is a sector where the energy efficiency needs to improve in order to reach the EU energy and climate goals. The energy efficiency goal is set in terms of primary energy even though there are different opinions on how to calculate primary energy. When determining the primary energy use in a building several assumptions are made regarding allocation and the value of different energy sources. In order to analyze the difference in primary energy when different methods are used, this study use 16 combinations of different assumptions to calculate the primary energy use for three simulated heating and ventilations systems in a building. The system with the lowest primary energy use differs depending on the method used. Comparing a system with district heating and mechanical exhaust ventilation with a system with district heating, mechanical exhaust ventilation and exhaust air heat pump, the former has a 40% higher primary energy use in one scenario while the other has a 320% higher in another scenario. This illustrates the difficulty in determining which system makes the largest contribution to fulfilling the EU energy and climate goals.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf