Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Chen, Song
    et al.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Yuanyuan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Wang, Xingzhu
    Ong, Beng
    Wong, Wai-Kwok
    Zhu, Xunjin
    Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 15, p. 13231-13239Article in journal (Refereed)
    Abstract [en]

    To develop new hole-transporting materials (HTMs) for efficient and stable perovskite solar. cells (PSCs), 5,10,15,20-tetrakis{4-[N,N-di(4-thethoxylphenyl)amino-phenyl]}-porphyrin was prepared in gram scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]-benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically a high hole Mobility and very favorable energetics for hole extraction that render them a new class of HTMs in organometallic halide PSCs. As expected, ZnP as HTM in PSCs affords a competitive power conversion efficiency (PCE) of 17.78%,which is comparable to that of the most powerful HTM of Spiro-MeOTAD (18.59%) under the same working conditions. Mean-While, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a lower PCE of 15.36%. Notably, the PSCs employing ZnP show a much,better stability than Spiro-OMeTAD. Moreover, the two-porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable PSCs. To the best of our knowledge, this is the best performance that porphyrin-based solar cells could show with PCE > 17%.

  • 2.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Chen, Cheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Aitola, Kerttu
    Zhang, Fuguo
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Boschloo, Gerrit
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Dalian University of Technology (DUT), China.
    Highly Efficient Integrated Perovskite Solar Cells Containing a Small Molecule-PC70BM Bulk Heterojunction Layer with an Extended Photovoltaic Response Up to 900 nm2016In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 28, no 23, p. 8631-8639Article in journal (Refereed)
    Abstract [en]

    We demonstrate a high efficiency perovskite solar cell (PSC) integrated with a bulk heterojunction layer, based on acceptor-donor-acceptor (A-D-A) type hole transport material (HTM) and PC70BM composite, yielding improved photoresponse. Two A-D-A-structured hole transporting materials termed M3 and M4 were designed and synthesized. Applied as HTMs in PSCs, power conversion efficiencies (PCEs) of 14.8% and 12.3% were obtained with M3 and M4, respectively. The HTMs M3 and M4 show competitive absorption, but do not contribute to photocurrent, resulting in low current density. This issue was solved by mixing the HTMs with PC70BM to form a bulk heterojunction (BHJ) layer and integrating this layer into the PSC as hole transport layer (HTL). Through careful interface optimization, the (FAPbI(3))(0.85)(MAPbBr(3))(0.15)/HTM:PC70BM integrated devices showed improved efficiencies of 16.2% and 15.0%, respectively. More importantly, the incident-photon-to-current conversion efficiency (IPCE) spectrum shows that the photoresponse is extended to 900 nm by integrating the M4:PC70BM based BHJ and (FAPbI(3))(0.85)(MAPbBr(3))(0.15) layers.

  • 3.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Chen, Cheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Fuguo
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Dalian University of Technology (DUT), China.
    A novel phenoxazine-based hole transport material for efficient perovskite solar cell2015In: Journal of Energy Challenges and Mechanics, ISSN 2095-4956, E-ISSN 2056-9386, Vol. 24, no 6, p. 698-706Article in journal (Refereed)
    Abstract [en]

    Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction of a 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-free HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%.

  • 4.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chen, C.
    Yang, X.
    Zhang, F.
    Tan, Q.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells2015In: Advanced Energy Materials, ISSN 1614-6832, Vol. 5, no 8, article id 1401720Article in journal (Refereed)
    Abstract [en]

    The phenoxazine-based acceptor-donor-acceptor structured small-molecule material M1 is used either as a hole-transport material in (CH<inf>3</inf>NH<inf>3</inf>)PbI<inf>3</inf>-perovskite-based solar cells or as photoactive donor material in bulk heterojunction organic solar cells. Excellent power conversion efficiencies of 13.2% and 6.9% are achieved in these two types of photovoltaic devices, respectively.

  • 5.
    Hua, Yong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Liu, Peng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Composite Hole-Transport Materials Based on a Metal-Organic Copper Complex and Spiro-OMeTAD for Efficient Perovskite Solar Cells2018In: SOLAR RRL, ISSN 2367-198X, Vol. 2, no 5, article id UNSP 1700073Article in journal (Refereed)
    Abstract [en]

    Spiro-OMeTAD has been the most commonly used hole-transport material in perovskite solar cells. However, this material shows intrinisic drawbacks, such as low hole mobility and conductivity in its pristine form, as well as self-aggregation when deposited as thin film. These are not beneficial properties for efficient hole transport and extraction. In order to address these issues, we have designed a new type of composite hole-transport materials based on a new metal-organic copper complex (CuH) and Spiro-OMeTAD. The incorporation of the molecularly bulky HTM CuH into the Spiro-OMeTAD material efficiently improves the hole mobility and suppresses the aggregation in the Spiro-OMeTAD film. As a result, the conversion efficiencies obtained for perovskite solar cells based on the composite HTM system reached as high as 18.83%, which is superior to solar cells based on the individual hole-transport materials CuH (15.75%) or Spiro-OMeTAD (14.47%) under the same working conditions. These results show that composite HTM systems may constitute an effective strategy to further improve the efficiency of perovskite solar cells.

  • 6.
    Hua, Yong
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors2016In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 7, no 4, p. 2633-2638Article in journal (Refereed)
    Abstract [en]

    Hole-transport materials (HTMs) play an important role as hole scavenger materials in the most efficient perovskite solar cells (PSCs). Here, for the first time, two Ag-based metal organic complexes (HA1 and HA2) are employed as a new class of dopant-free hole-transport material for application in PSCs. These HTMs show excellent conductivity and hole-transport mobility. Consequently, the devices based on these two HTMs exhibit unusually high fill factors of 0.76 for HA1 and 0.78 for HA2, which are significantly higher than that obtained using spiro-OMeTAD (0.69). The cell based on HA1-HTM in its pristine form achieved a high power conversion efficiency of 11.98% under air conditions, which is comparable to the PCE of the cell employing the well-known doped spiro-MeOTAD (12.27%) under the same conditions. More importantly, their facile synthesis and purification without using column chromatography makes these new silver-based HTMs highly promising for future commercial applications of PSCs. These results provide a new way to develop more low-cost and high conductivity metal-complex based HTMs for efficient PSCs.

  • 7.
    Hua, Yong
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Zhang, J.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, E. M. J.
    Sveinbjörnsson, K.
    Aitola, K.
    Boschloo, G.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells2016In: Nano Energy, ISSN 2211-2855, Vol. 26, p. 108-113Article in journal (Refereed)
    Abstract [en]

    Two novel low-cost fluorene-based hole transport materials (HTMs) HT1 and HT2 as alternatives to the expensive HTM Spiro-OMeTAD have been designed and synthesized for the application in perovskite solar cells (PSCs) and solid-state dye-sensitized solar cell (ssDSCs). The two HTMs were prepared through a facile two-step reaction from cheap starting material and with a total yield higher than 90%. These HTMs exhibit good solubility and charge-transport ability. PSCs based on HT2 achieved power conversion efficiency (PCE) of 18.04% under air conditions, which is comparable to that of the cell employing the commonly used Spiro-OMeTAD (18.27%), while HT1-based cell showed a slightly worse performance with a PCE of 17.18%. For ssDSCs, the HT2-based device yielded a PCE of 6.35%, which is also comparable to that of a cell fabricated based on Spiro-OMeTAD (6.36%). We found that the larger dimensional structure and molecular weight of HT2 enable better photovoltaic performance than that of the smaller one HT1. These results show that easily synthesized fluorene-based HTMs have great potential to replace the expensive Spiro-OMeTAD for both PSCs and ssDSCs. © 2016 Elsevier Ltd.

  • 8.
    Liu, Peng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Aitola, K.
    Sveinbjörnsson, K.
    Zhang, J.
    Boschloo, G.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells2017In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 344, p. 11-14Article in journal (Refereed)
    Abstract [en]

    Two low-cost, easily synthesized π-conjugated molecules have been applied as hole-transport materials (HTMs) for solid state dye-sensitized solar cells (ssDSSCs) and perovskite solar cells (PSCs). For X1-based devices, high power conversion efficiencies (PCEs) of 5.8% and 14.4% in ssDSSCs and PSCs has been demonstrated. For X14-based devices, PCEs were improved to 6.1% and 16.4% in ssDSCs and PSCs, respectively.

  • 9.
    Tian, Lei
    et al.
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Fohlinger, Jens
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Zhang, Zhibin
    Uppsala Univ, Dept Engn Sci, Uppsala, Sweden..
    Pati, Palas Baran
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Lin, Junzhong
    Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden..
    Kubart, Tomas
    Uppsala Univ, Dept Engn Sci, Uppsala, Sweden..
    Hua, Yong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Junliang
    Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden..
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Hammarström, Leif
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Tian, Haining
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Solid state p-type dye sensitized NiO-dye-TiO2 core-shell solar cells2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 30, p. 3739-3742Article in journal (Refereed)
    Abstract [en]

    Solid state p-type dye sensitized NiO-dye-TiO2 core-shell solar cells with an organic dye PB6 were successfully fabricated for the first time. With Al2O3 as an inner barrier layer, the recombination process between injected holes in NiO and injected electrons in TiO2 was significantly suppressed and the charge transport time was also improved.

  • 10.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Bi, Dongqin
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Graetzel, Michael
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    A low-cost spiro[fluorene-9,9 '-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 3, p. 873-877Article in journal (Refereed)
    Abstract [en]

    A low-cost spiro[fluorene-9,9'-xanthene] (SFX) based organic hole transport material (HTM) termed X60 was designed and synthesized using a two-step synthetic route. Devices with X60 as HTM showed high power conversion efficiencies (PCEs) amounting to 7.30% in solid-state dye-sensitized solar cells (ssDSCs) and 19.84% in perovskite solar cells (PSCs), under 100 mW cm(-2) AM1.5G solar illumination. To the best of our knowledge, this is the first example of an easily synthesized spiro-structured HTM that shows comparable performance with respect to the well-known HTM Spiro-OMeTAD in both ssDSCs and PSCs. Furthermore, the facile synthesis of X60 from commercially available starting materials makes this HTM very promising for large-scale industrial production in the future.

  • 11.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gabrielsson, Erik
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cheng, Ming
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    1,1,2,2-Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells2015In: Advanced Energy Materials, ISSN 1614-6832, Vol. 5, no 10, article id 1402340Article in journal (Refereed)
    Abstract [en]

    A low-cost, chlorinated hydrocarbon solvent, 1,1,2,2-tetrachloroethane (TeCA), is used as an effective additive for the triarylamine-based organic hole-transport material, Spiro-OMeTAD, which is successfully applied in highly efficient solid-state dye-sensitized solar cells. A record power conversion efficiency of 7.7% is obtained by using the donor (D)-π-acceptor (A)-dye, LEG4, in combination with the new method of TeCA-doping of the hole-transporting material Spiro-OMeTAD.

  • 12.
    Xu, Bo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. University of Washington, United States.
    Zhang, J.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Wang, Linqin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ruan, C.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Boschloo, G.
    Johansson, E. M. J.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, A.
    Jen, A. K. -Y
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells2017In: Chem, ISSN 2451-9308, Vol. 2, no 5, p. 676-687Article in journal (Refereed)
    Abstract [en]

    The power-conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased rapidly from about 4% to 22% during the past few years. One of the major challenges for further improvement of the efficiency of PSCs is the lack of sufficiently good hole transport materials (HTMs) to efficiently scavenge the photogenerated holes and aid the transport of the holes to the counter-electrode in the PSCs. In this study, we tailor-made two low-cost spiro[fluorene-9,9′-xanthene] (SFX)-based 3D oligomers, termed X54 and X55, by using a one-pot synthesis approach for PSCs. One of the HTMs, X55, gives a much deeper HOMO level and a higher hole mobility and conductivity than the state-of-the-art HTM, Spiro-OMeTAD. PSC devices based on X55 as the HTM show a very impressive PCE of 20.8% under 100 mW·cm−2 AM1.5G solar illumination, which is much higher than the PCE of the reference devices based on Spiro-OMeTAD (18.8%) and X54 (13.6%) under the same conditions.

  • 13. Zhang, J.
    et al.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Yang, L.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, M. B.
    Vlachopoulos, N.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, G.
    Johansson, E. M. J.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, A.
    The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming Spiro-OMeTAD in Perovskite Solar Cells2016In: Advanced Energy Materials, ISSN 1614-6832, Vol. 6, no 19, article id 1601062Article in journal (Refereed)
  • 14. Zhang, Jinbao
    et al.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Malin B.
    Hadadian, Mahboubeh
    Baena, Juan Pablo Correa
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Vlachopoulos, Nick
    Johansson, Erik M. J.
    Boschloo, Gerrit
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non-Spiro Hole Transporting Materials for High-Efficiency Mixed-Ion Perovskite Solar Cells2016In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 6, no 13, article id 1502536Article in journal (Refereed)
  • 15. Zhang, Jinbao
    et al.
    Xu, Bo
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Yang, Li
    Mingorance, Alba
    Ruan, Changqing
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Wang, Linqin
    Vlachopoulos, Nick
    Lira-Cantu, Monica
    Boschloo, Gerrit
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Johansson, Erik M. J.
    Incorporation of Counter Ions in Organic Molecules: New Strategy in Developing Dopant-Free Hole Transport Materials for Efficient Mixed-Ion Perovskite Solar Cells2017In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 7, no 14, article id 1602736Article in journal (Refereed)
    Abstract [en]

    Hole transport matertial (HTM) as charge selective layer in perovskite solar cells (PSCs) plays an important role in achieving high power conversion efficiency (PCE). It is known that the dopants and additives are necessary in the HTM in order to improve the hole conductivity of the HTM as well as to obtain high efficiency in PSCs, but the additives can potentially induce device instability and poor device reproducibility. In this work a new strategy to design dopant-free HTMs has been presented by modifying the HTM to include charged moieties which are accompanied with counter ions. The device based on this ionic HTM X44 dos not need any additional doping and the device shows an impressive PCE of 16.2%. Detailed characterization suggests that the incorporated counter ions in X44 can significantly affect the hole conductivity and the homogeneity of the formed HTM thin film. The superior photovoltaic performance for X44 is attributed to both efficient hole transport and effective interfacial hole transfer in the solar cell device. This work provides important insights as regards the future design of new and efficient dopant free HTMs for photovotaics or other optoelectronic applications.

  • 16.
    Zhang, Wei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sadollahkhani, Azar
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhang, Biaobiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Fuguo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hao, Yan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells2017In: ACS OMEGA, ISSN 2470-1343, Vol. 2, no 12, p. 9231-9240Article in journal (Refereed)
    Abstract [en]

    Triphenylamine-based metal complexes were designed and synthesized via coordination to Ni(II), Cu(II), and Zn(II) using their respective acetate salts as the starting materials. The resulting metal complexes exhibit more negative energy levels (vs vacuum) as compared to 2,2', 7,7'-tetrakis(N, N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), high hole extraction efficiency, but low hole mobilities and conductivities. Application of dopants typically used for Spiro-OMeTAD was not successful, indicating a more complicated mechanism of partial oxidation besides the redox potential. However, utilization as hole-transport material was successful, giving a highest efficiency of 11.1% under AM 1.5G solar illumination.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf