Change search
Refine search result
1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abdalla, H.
    et al.
    Abramowski, A.
    Aharonian, F.
    Benkhali, F. Ait
    Akhperjanian, A. G.
    Andersson, T.
    Anguener, E. O.
    Arrieta, M.
    Aubert, P.
    Backes, M.
    Balzer, A.
    Barnard, M.
    Becherini, Y.
    Tjus, J. Becker
    Berge, D.
    Bernhard, S.
    Bernloehr, K.
    Blackwell, R.
    Bottcher, M.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Brun, F.
    Brun, P.
    Bryan, M.
    Bulik, T.
    Capasso, M.
    Carr, J.
    Casanova, S.
    Cerruti, M.
    Chakraborty, N.
    Chalme-Calvet, R.
    Chaves, R. C. G.
    Chen, A.
    Chevalier, J.
    Chretien, M.
    Colafrancesco, S.
    Cologna, G.
    Condon, B.
    Conrad, J.
    Couturier, C.
    Cui, Y.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    Devin, J.
    dewilt, P.
    Dirson, L.
    Djannati-Atai, A.
    Domainko, W.
    Donath, A.
    Drury, L. O 'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Edwards, T.
    Egberts, K.
    Eger, P.
    Ernenwein, J. -P
    Eschbach, S.
    Farnier, C.
    Fegan, S.
    Fernandes, M. V.
    Fiasson, A.
    Fontaine, G.
    Forster, A.
    Funk, S.
    Fuessling, M.
    Gabici, S.
    Gajdus, M.
    Gallant, Y. A.
    Garrigoux, T.
    Giavitto, G.
    Giebels, B.
    Glicenstein, J. F.
    Gottschall, D.
    Goyal, A.
    Grondin, M. -H
    Hadasch, D.
    Hahn, J.
    Haupt, M.
    Hawkes, J.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hervet, O.
    Hillert, A.
    Hinton, J. A.
    Hofmann, W.
    Hoischen, C.
    Holler, M.
    Horns, D.
    Ivascenko, A.
    Jacholkowska, A.
    Jamrozy, M.
    Janiak, M.
    Jankowsky, D.
    Jankowsky, F.
    Jingo, M.
    Jogler, T.
    Jouvin, L.
    Jung-Richardt, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kerszberg, D.
    Khelifi, B.
    Kieffer, M.
    King, J.
    Klepser, S.
    Klochkov, D.
    Kluzniak, W.
    Kolitzus, D.
    Komin, Nu.
    Kosack, K.
    Krakau, S.
    Kraus, M.
    Krayzel, F.
    Kruger, P. P.
    Laffon, H.
    Lamanna, G.
    Lau, J.
    Lees, J. -P
    Lefaucheur, J.
    Lefranc, V.
    Lemiere, A.
    Lemoine-Goumard, M.
    Lenain, J. -P
    Leser, E.
    Lohse, T.
    Lorentz, M.
    Liu, R.
    Lopez-Coto, R.
    Lypova, I.
    Marandon, V.
    Marcowith, A.
    Mariaud, C.
    Marx, R.
    Maurin, G.
    Maxted, N.
    Mayer, M.
    Meintjes, P. J.
    Meyer, M.
    Mitchell, A. M. W.
    Moderski, R.
    Mohamed, M.
    Mohrmann, L.
    Mora, K.
    Moulin, E.
    Murach, T.
    de Naurois, M.
    Niederwanger, F.
    Niemiec, J.
    Oakes, L.
    O'Brien, P.
    Odaka, H.
    Oul, S.
    Ohm, S.
    Ostrowski, M.
    Oya, I.
    Padovani, M.
    Panter, M.
    Parsons, R. D.
    Arribas, M. Paz
    Pekeur, N. W.
    Pelletier, G.
    Perennes, C.
    Petrucci, P. -O
    Peyaud, B.
    Pita, S.
    Poon, H.
    Prokhorov, D.
    Prokoph, H.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raab, S.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Romoli, C.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Sahakian, V.
    Salek, D.
    Sanchez, D. A.
    Santangelo, A.
    Sasaki, M.
    Schlickeiser, R.
    Schussler, F.
    Schulz, A.
    Schwanke, U.
    Schwemmer, S.
    Settimo, M.
    Seyffert, A. S.
    Shafi, N.
    Shilon, I.
    Simoni, R.
    Sol, H.
    Spanier, F.
    Spengler, G.
    Spies, F.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Tavernet, J. -P
    Tavernier, T.
    Taylor, A. M.
    Terrier, R.
    Tibaldo, L.
    Tiziani, D.
    Tluczykont, M.
    Trichard, C.
    Tuffs, R.
    Uchiyama, Y.
    van der Walt, D. J.
    van Edik, C.
    van Soelen, B.
    Vasileiadis, G.
    Veh, J.
    Venter, C.
    Viana, A.
    Vincent, P.
    Vink, J.
    Voisin, F.
    Voelk, H. J.
    Vuillaume, T.
    Wadiasingh, Z.
    Wagner, S. J.
    Wagner, P.
    Wagner, R. M.
    White, R.
    Wierzcholska, A.
    Willmann, P.
    Woernlein, A.
    Wouters, D.
    Yang, R.
    Zabalza, V.
    Zaborov, D.
    Zacharias, M.
    Zdziarski, A. A.
    Zech, A.
    Zefi, F.
    Ziegler, A.
    Zywucka, N.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Barbiellini, G.
    Bellazzini, R.
    Blandford, R. D.
    Bonino, R.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Donaggio, B.
    Favuzzi, C.
    Focke, W. B.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Guillemot, L.
    Guiriec, S.
    Horan, D.
    Johannesson, G.
    Kamae, T.
    Kensei, S.
    Kocevski, D.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    Michelson, P. F.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Negro, M.
    Nuss, E.
    Orienti, M.
    Orlando, E.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Razzano, M.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spinelli, P.
    Thayer, J. B.
    Torres, D. F.
    Torresi, E.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    Gamma-ray blazar spectra with HESS II mono analysis: The case of PKS2155-304 and PG1553+1132017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 600, article id A89Article in journal (Refereed)
    Abstract [en]

    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.

  • 2. Abdollahi, S.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Wood, K. S.
    The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 846, no 1, article id 34Article in journal (Refereed)
    Abstract [en]

    We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6s (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p similar to 2.

  • 3. Acero, F.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zimmer, S.
    et al.,
    DEVELOPMENT of the MODEL of GALACTIC INTERSTELLAR EMISSION for STANDARD POINT-SOURCE ANALYSIS of FERMI LARGE AREA TELESCOPE DATA2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 223, no 2, article id 26Article in journal (Refereed)
    Abstract [en]

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20°and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4°of the Galactic Center.

  • 4. Acero, F.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Sweden.
    Zimmer, S.
    et al.,
    The first fermi lat supernova remnant catalog2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 224, no 1, article id 8Article in journal (Refereed)
    Abstract [en]

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  • 5.
    Ackermann, M.
    et al.
    Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany..
    Ajello, M.
    Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA..
    Albert, A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Atwood, W. B.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA.;Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA..
    Baldini, L.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Univ Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Ballet, J.
    Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France..
    Barbiellini, G.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Bastieri, D.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Bechtol, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA..
    Bellazzini, R.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Bissaldi, E.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Blandford, R. D.
    Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bloom, E. D.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bonino, R.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy..
    Bottacini, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bregeon, J.
    Univ Turin, Dipartimento Fis Generale Amadeo Avogadro, I-10125 Turin, Italy..
    Bruel, P.
    Univ Montpellier, CNRS IN2P3, Lab Univ & Particules Montpellier, Montpellier, France..
    Buehler, R.
    Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany..
    Caliandro, G. A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;CNRS IN2P3, Ecole polytech, Lab Leprince Ringuet, Palaiseau, France.;CIFS, I-10133 Turin, Italy..
    Cameron, R. A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Caragiulo, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Caraveo, P. A.
    INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy..
    Casandjian, J. M.
    Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France..
    Cavazzuti, E.
    ASI Sci Data Ctr, I-00133 Rome, Italy..
    Cecchi, C.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.;Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy..
    Charles, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Chekhtman, A.
    George Mason Univ, Coll Sci, Fairfax, VA 22030 USA..
    Chiaro, G.
    Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Ciprini, S.
    ASI Sci Data Ctr, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Cohen-Tanugi, J.
    Conrad, J.
    Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden.;Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, ES-10691 Stockholm, Sweden..
    Cutini, S.
    ASI Sci Data Ctr, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.;INAF, Osserv Astronom Roma, I-00040 Rome, Italy..
    D'Ammando, F.
    INAF Ist Radioastron, I-40129 Bologna, Italy.;Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy..
    de Angelis, A.
    Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.;Grp Collegato Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy..
    de Palma, F.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy..
    Desiante, R.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.;Univ Udine, I-33100 Udine, Italy..
    Digel, S. W.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Di Venere, L.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Drell, P. S.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Favuzzi, C.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Fegan, S. J.
    Fukazawa, Y.
    Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan..
    Funk, S.
    Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Fusco, P.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Gargano, F.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Gasparrini, D.
    ASI Sci Data Ctr, I-00133 Rome, Italy..
    Giglietto, N.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Giordano, F.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Giroletti, M.
    Godfrey, G.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Green, D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Grenier, I. A.
    Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France..
    Guiriec, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Hays, E.
    Hewitt, J. W.
    Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA..
    Horan, D.
    Johannesson, G.
    Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland..
    Kuss, M.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics.
    Latronico, L.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Li, J.
    IEEC CSIC, Inst Space Sci, Campus UAB, E-08193 Barcelona, Spain..
    Li, L.
    Longo, F.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Loparco, F.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Lovellette, M. N.
    IEEC CSIC, Inst Space Sci, Campus UAB, E-08193 Barcelona, Spain..
    Lubrano, P.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.;Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy..
    Madejski, G. M.
    Maldera, S.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Manfreda, A.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Mayer, M.
    Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany..
    Mazziotta, M. N.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Michelson, P. F.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Mitthumsiri, W.
    Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.;Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand..
    Mizuno, T.
    Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan..
    Monzani, M. E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Morselli, A.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy..
    Moskalenko, I. V.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Murgia, S.
    Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA..
    Nuss, E.
    Ohsugi, T.
    Orienti, M.
    Orlando, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Ormes, J. F.
    Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA..
    Paneque, D.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany..
    Pesce-Rollins, M.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA..
    Petrosian, V.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA..
    Piron, F.
    Pivato, G.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Porter, T. A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA..
    Raino, S.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.;M Merlin dellUniv Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy..
    Rando, R.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Razzano, M.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Reimer, A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Reimer, O.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Sanchez-Conde, M.
    Sgro, C.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Siskind, E. J.
    NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA..
    Spada, F.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Spandre, G.
    Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Spinelli, P.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Tajima, H.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan..
    Takahashi, H.
    Thayer, J. B.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Tibaldo, L.
    Max Planck Inst Kernphys, D-69029 Heidelberg, Germany..
    Torres, D. F.
    ICREA, Barcelona, Spain..
    Tosti, G.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.;Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy..
    Troja, E.
    Vianello, G.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Wood, K. S.
    Zimmer, S.
    Rephaeli, Y.
    Tel Aviv Univ, POB 39040, IL-6997801 Tel Aviv, Israel.;Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA..
    Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data (vol 819, 149, 2016)2018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 860, no 1, article id 85Article in journal (Refereed)
  • 6. Ackermann, M.
    et al.
    Ajello, M.
    Albert, A.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Chiappo, A.
    Chiaro, G.
    Ciprini, S.
    Conrad, J.
    Costanza, F.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    De Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Gomez-Vargas, G. A.
    Green, D.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jogler, T.
    Johnson, A. S.
    Kamae, T.
    Kocevski, D.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Martin, P.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Principe, G.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Sánchez-Conde, M.
    Sgrò, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Tanaka, K.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Troja, E.
    Uchiyama, Y.
    Vianello, G.
    Wood, K. S.
    Wood, M.
    Zaharijas, G.
    Zimmer, S.
    The Fermi Galactic Center GeV Excess and Implications for Dark Matter2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 840, no 1, article id 43Article in journal (Refereed)
    Abstract [en]

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.

  • 7. Ackermann, M.
    et al.
    Ajello, M.
    Albert, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiaro, G.
    Ciprini, S.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Favuzzi, C.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hayashi, K.
    Hou, X.
    Johannesson, G.
    Kamae, T.
    Knodlseder, J.
    Kong, A. K. H.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Martin, P.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, O.
    Sanchez-Conde, M.
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Tanaka, K.
    Tibaldo, L.
    Torres, D. F.
    Troja, E.
    Uchiyama, Y.
    Wang, J. C.
    Wood, K. S.
    Wood, M.
    Zaharijas, G.
    Zhou, M.
    Observations of M31 and M33 with the Fermi Large Area Telescope: A Galactic Center Excess in Andromeda?2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 836, no 2, article id 208Article in journal (Refereed)
    Abstract [en]

    The Fermi Large Area Telescope (LAT) has opened the way for comparative studies of cosmic rays (CRs) and high-energy objects in the Milky Way (MW) and in other, external, star-forming galaxies. Using 2 yr of observations with the Fermi LAT, Local Group galaxy M31 was detected as a marginally extended gamma-ray source, while only an upper limit has been derived for the other nearby galaxy M33. We revisited the gamma-ray emission in the direction of M31 and M33 using more than 7 yr of LAT Pass 8 data in the energy range 0.1-100 GeV, presenting detailed morphological and spectral analyses. M33 remains undetected, and we computed an upper limit of 2.0 x 10(-12) erg cm(-2) s(-1) on the 0.1-100 GeV energy flux (95% confidence level). This revised upper limit remains consistent with the observed correlation between gamma-ray luminosity and star formation rate tracers and implies an average CR density in M33 that is at most half of that of the MW. M31 is detected with a significance of nearly 10 sigma. Its spectrum is consistent with a power law with photon index Gamma = 2.4 +/- 0.1(stat) (vertical bar) (syst) and a 0.1-100 GeV energy flux of (5.6 +/- 0.6(stat vertical bar syst)) x 10(-12) erg cm(-1) s(-1). M31 is detected to be extended with a 4 sigma significance. The spatial distribution of the emission is consistent with a uniform-brightness disk with a radius of 0 degrees.4 and no offset from the center of the galaxy, but nonuniform intensity distributions cannot be excluded. The flux from M31 appears confined to the inner regions of the galaxy and does not fill the disk of the galaxy or extend far from it. The gamma-ray signal is not correlated with regions rich in gas or star formation activity, which suggests that the emission is not interstellar in origin, unless the energetic particles radiating in gamma rays do not originate in recent star formation. Alternative and nonexclusive interpretations are that the emission results from a population of millisecond pulsars dispersed in the bulge and disk of M31 by disrupted globular clusters or from the decay or annihilation of dark matter particles, similar to what has been proposed to account for the so-called Galactic center excess found in Fermi-LAT observations of the MW.

  • 8. Ackermann, M.
    et al.
    Ajello, M.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Gonzalez, J. Becerra
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Desiante, R.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Furniss, A. K.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Hill, A. B.
    Horan, D.
    Iafrate, G.
    Hartmann, Dieter
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Maldera, S.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Romani, R. W.
    Sanchez-Conde, M.
    Parkinson, P. M. Saz
    Schmid, J.
    Schulz, A.
    Sgro, C.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, M.
    Takahashi, T.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    Wood, M.
    Yassine, M.
    Zaharijas, G.
    Zimmer, S.
    2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 222, no 1, article id 5Article in journal (Refereed)
    Abstract [en]

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass. 8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT. has detected 360 sources, which constitute the second catalog of hard Fermi-LAT. sources (2FHL). The improved angular resolution enables the precise localization of point sources (similar to 1.' 7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT. on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.

  • 9. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Cohen-Tanugi, J.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    Davis, D. S.
    de Angelis, A.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Georganopoulos, M.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Godfrey, G.
    Green, D.
    Grenier, I. A.
    Guiriec, S.
    Hays, E.
    Hewitt, J. W.
    Hill, A. B.
    Jogler, T.
    Johnnesson, G.
    Kensei, S.
    Kuss, M.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Li, L.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Negro, M.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Schmid, J.
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Takahashi, H.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    Wood, M.
    Zimmer, S.
    FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A2016In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 826, no 1, article id 1Article in journal (Refereed)
    Abstract [en]

    We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.

  • 10. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Gonzalez, J. B.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Conrad, J.
    Costantin, D.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    Palma, F. D.
    Desiante, R.
    Digel, S. W.
    Lalla, N. D.
    Mauro, M. D.
    Venere, L. D.
    Domínguez, A.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Finke, J.
    Focke, W. B.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hartmann, D. H.
    Hays, E.
    Horan, D.
    Jogler, T.
    Jóhannesson, G.
    Johnson, A. S.
    Kuss, M.
    Mura, G. L.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Marcotulli, L.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Ojha, R.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Rainò, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Romani, R. W.
    Sgrò, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stalin, C. S.
    Stawarz, L.
    Suson, D. J.
    Takahashi, M.
    Tanaka, K.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Torresi, E.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    Gamma-Ray Blazars within the First 2 Billion Years2017In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 837, no 1, article id L5Article in journal (Refereed)
    Abstract [en]

    The detection of high-redshift (z &gt; 3) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five γ-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in γ-rays. Among these five objects, NVSS J151002+570243 is now the most distant known γ-ray-emitting blazar at z = 4.31. These objects have steeply falling γ-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large (&gt;20). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes (MBH ∼ 10 8-10 Mo ). We find that, at z ≈ 4, the space density of &gt;109 Mo black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe.

  • 11. Ackermann, M.
    et al.
    Albert, A.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Bloom, E. D.
    Bonino, R.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Drell, P. S.
    Favuzzi, C.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hill, A. B.
    Horan, D.
    Johannesson, G.
    Knoedlseder, J.
    Kuss, M.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Applied Physics. Oskar Klein Centre for Cosmoparticle Physics, Alba Nova, Sweden.
    Latronico, L.
    Li, J.
    Li, Liang
    KTH, School of Engineering Sciences (SCI), Applied Physics. Oskar Klein Centre for Cosmoparticle Physics, Alba Nova, Sweden.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Maldera, S.
    Martin, P.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Murgia, S.
    Nuss, E.
    Ohsugi, T.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Romani, R. W.
    Sanchez-Conde, M.
    Schulz, A.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Takahashi, H.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, M.
    Zimmer, S.
    Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 586, article id A71Article in journal (Refereed)
    Abstract [en]

    Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in gamma-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of similar to 1-100 GeV CRs with a density of similar to 30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations of CRs compared to the large-scale population. An alternative explanation is that this is emission from an unresolved population of at least two dozen objects, such as pulsars and their nebulae or supernova remnants. This small-scale extended emission has a spatial distribution that does not clearly correlate with known components of the LMC, except for a possible relation to cavities and supergiant shells. Conclusions. The Fermi-LAT GeV observations allowed us to detect individual sources in the LMC. Three of the newly discovered sources are associated with rare and extreme objects. The 30 Doradus region is prominent in GeV gamma-rays because PSR J0540-6919 and N 157B are strong emitters. The extended emission from the galaxy has an unexpected spatial distribution, and observations at higher energies and in radio may help to clarify its origin.

  • 12. Ackermann, M.
    et al.
    Allafort, A.
    Baldini, L.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Ciprini, S.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    Palma, F. D.
    Desiante, R.
    Digel, S. W.
    Lalla, N. D.
    Mauro, M. D.
    Venere, L. D.
    Drell, P. S.
    Favuzzi, C.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Jogler, T.
    Jóhannesson, G.
    Kashapova, L.
    Krucker, S.
    Kuss, M.
    Mura, G. L.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Liu, W.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Pal'Shin, V.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Principe, G.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Reimer, O.
    Costa, F. R. D.
    Sgrò, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Tajima, H.
    Thayer, J. B.
    Torres, D. F.
    Troja, E.
    Vianello, G.
    Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 835, no 2, article id 219Article in journal (Refereed)
    Abstract [en]

    We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.

  • 13. Ackermann, M.
    et al.
    Anantua, R.
    Asano, K.
    Baldini, L.
    Barbiellini, G.
    Bastieri, D.
    Gonzalez, J. Becerra
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Bruel, P.
    Buehler, R.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    De Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Johannesson, G.
    Kensei, S.
    Kocevski, D.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Nalewajko, K.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Orlando, E.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Principe, G.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Scargle, J. D.
    Sgro, C.
    Sikora, M.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spinelli, P.
    Stawarz, L.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Troja, E.
    Uchiyama, Y.
    Yuan, Y.
    Zimmer, S.
    MINUTE-TIMESCALE > 100 MeV gamma-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE2016In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 824, no 2, article id L20Article in journal (Refereed)
    Abstract [en]

    On 2015 June 16, Fermi- LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of similar to 3.6 x 10(-5) photons cm(-2) s(-1), averaged over orbital period intervals. It is historically the highest gamma-ray flux observed from the source, including past EGRET observations, with the gamma-ray isotropic luminosity reaching similar to 10(49) erg s(-1). During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi- LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Gamma) of 35 is necessary to avoid both internal gamma-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, G should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (similar to 5 x 10(-4)). Equipartition requires Gamma as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider. rays originating as synchrotron radiation of gamma e similar to 1.6 x 10(6) electrons, in a magnetic field B similar to 1.3 kG, accelerated by strong electric fields E similar to B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of gamma-rays in hadronic processes.

  • 14. Ackermann, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
    Li, L.
    et al.,
    Multiwavelength evidence for quasi-periodic modulation in the gamma-ray blazar PG 1553+1132015In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 813, no 2, article id L41Article in journal (Refereed)
    Abstract [en]

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  • 15. Ackermann, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
    Li, L.
    et al.,
    SEARCH for EXTENDED GAMMA-RAY EMISSION from the VIRGO GALAXY CLUSTER with FERMI-LAT2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 812, no 2, article id 159Article in journal (Refereed)
    Abstract [en]

    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of gamma-ray telescopes. Here we use three years of Fermi-Large Area Telescope data, which are the most suitable for searching for very extended emission in the vicinity of the nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3 degrees that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into b (b) over bar, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for m(DM) <= 100 GeV. In a more optimistic scenario, we exclude <sigma v > similar to 3 x 10(-26)cm(3)s(-1) for m(DM)less than or similar to 40 GeV for the same channel. Finally, we derive upper limits on the gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than similar to 6%.

  • 16. Ackermann, M
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics. AlbaNova, Sweden.
    Rephaeli, Y.
    et al.,
    SEARCH FOR GAMMA-RAY EMISSION FROM THE COMA CLUSTER WITH SIX YEARS OF FERMI-LAT DATA2016In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 819, no 2, article id 149Article in journal (Refereed)
    Abstract [en]

    We present results from gamma-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released "Pass 8" event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the gamma-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10(-9) ph cm(-2) s(-1) and 5.2 x 10(-9) ph cm(-2) s(-1) respectively (the latter corresponds to residual emission at the level of 1.8 sigma). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected.-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.

  • 17. Ackermann, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden..
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden..
    Wood, M.
    et al.,
    CONTEMPORANEOUS BROADBAND OBSERVATIONS OF THREE HIGH-REDSHIFT BL LAC OBJECTS2016In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 820, no 1, article id 72Article in journal (Refereed)
    Abstract [en]

    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects 3FGL J0022.1-1855 (z = 0.689), 3FGL J0630.9-2406 (z≳ 1.239), and 3FGL J0811.2-7529 (z = 0.774), detected by Fermi with relatively flat gigaelectronvolt spectra. By observing simultaneously in the near-infrared to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the gigaelectronvolt Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, with poorer fits for high-ultraviolet models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest-redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components. For 3FGL J0811.2-7529, we also discover a nearby serendipitous source in the X-ray data, which is almost certainly another lower synchrotron peak frequency (vpk sy) BL Lac, that may contribute flux in the Fermi band. Since our sources are unusual high-luminosity, moderate vpk sy BL Lacs, we compare these quantities and the Compton dominance, the ratio of peak inverse Compton to peak synchrotron luminosities (Lpk IC/Lpk sy), with those of the full Fermi BL Lac population.

  • 18. Ackermann, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Stockholm, Sweden .
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Stockholm, Sweden .
    Zampieri, L.
    et al.,
    An extremely bright gamma-ray pulsar in the Large Magellanic Cloud2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 350, no 6262, p. 801-805Article in journal (Refereed)
    Abstract [en]

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  • 19. Ackermann, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Zimmer, S.
    et al.,
    Resolving the extragalactic γ-ray background above 50 GeV with the fermi large area telescope2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 15, article id 151105Article in journal (Refereed)
    Abstract [en]

    The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E>50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (∼8×10-12 ph cm-2 s-1). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, Sb, in the range [8×10-12,1.5×10-11] ph cm-2 s-1 and power-law indices below and above the break of α2[1.60,1.75] and α1=2.49±0.12, respectively. Integration of dN/dS shows that point sources account for at least 86-14+16% of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.

  • 20. Ackermann, M
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics.
    Zimmer, S.
    et al.,
    Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 23, article id 231301Article in journal (Refereed)
    Abstract [en]

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on gamma-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new PASS8 event-level analysis. None of the dSphs are significantly detected in gamma rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass less than or similar to 100 GeV annihilating via quark and tau-lepton channels.

  • 21.
    Ahnen, M. L.
    et al.
    Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland..
    Jóhannesson, Gudlaugur
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Yassine, M.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    et al.,
    MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources2019In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 485, no 1, p. 356-366Article in journal (Refereed)
    Abstract [en]

    The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19 show no association with any known high-energy (HE; E greater than or similar to 10 GeV) or very-high-energy (VHE; E greater than or similar to 300 GeV) sources. This catalogue motivated follow-up studies by both the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between High Altitude Water Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084*, and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degrees extension (at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, whilst a simply minimum extension of 0.16 degrees (at 95 per cent confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail.

  • 22. Ahnen, Max L.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics.
    Grishina, T. S.
    et.al.,
    Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 20152017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 603, article id A29Article in journal (Refereed)
    Abstract [en]

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.

  • 23. Ahnen, Max L.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, Stockholm, Sweden.
    Li, Liang
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, Stockholm, Sweden.
    Zottmann, N.
    et al.,
    VERY HIGH ENERGY γ-RAYS from the UNIVERSE'S MIDDLE AGEMAGIC: DETECTION of the z = 0.940 BLAZAR PKS 1441+25 with MAGIC2015In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 815, no 2, article id L23Article in journal (Refereed)
    Abstract [en]

    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5σ using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability timescale is estimated to be 6.4 ±1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad-line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.

  • 24. Ajello, M.
    et al.
    Albert, A.
    Atwood, W. B.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Carave, P. A.
    Cecchi, C.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Desiante, R.
    Di Venere, L.
    Drell, P. S.
    Favuzzi, C.
    Ferrara, E. C.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Gomez-Vargas, G. A.
    Grenier, I. A.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hewitt, J. W.
    Hill, A. B.
    Horan, D.
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Karwin, C.
    Knoedlseder, J.
    Kuss, M.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Sanchez-Conde, M.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Thayer, J. B.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Vianello, G.
    Winer, B. L.
    Wood, K. S.
    Zaharijas, G.
    Zimmer, S.
    FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE GALACTIC CENTER2016In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 819, no 1, article id 44Article in journal (Refereed)
    Abstract [en]

    The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.

  • 25. Ajello, M.
    et al.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bregeon, J.
    Britto, R. J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Costantin, D.
    Costanza, F.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Drell, P. S.
    Dumora, D.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fortin, P.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Gudlaugur
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Kensei, S.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Parkinson, P. M. Saz
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Suson, D. J.
    Takahashi, M.
    Tak, D.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Torresi, E.
    Troja, E.
    Vianello, G.
    Wood, K.
    Wood, M.
    3FHL: The Third Catalog of Hard Fermi-LAT Sources2017In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 232, no 2, article id 18Article in journal (Refereed)
  • 26.
    Ajello, M.
    et al.
    Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA..
    Baldini, L.
    Univ Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Barbiellini, G.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Bastieri, D.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Bellazzini, R.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Bissaldi, E.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Blandford, R. D.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bonino, R.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.;Univ Turin, Dipartimento Fis, I-10125 Turin, Italy..
    Bottacini, E.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bregeon, J.
    Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France..
    Bruel, P.
    CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Buehler, R.
    DESY, D-15738 Zeuthen, Germany..
    Cameron, R. A.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Caputo, R.
    CRESST, Greenbelt, MD 20771 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Caraveo, P. A.
    INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy..
    Chiaro, G.
    INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy..
    Ciprini, S.
    Agenzia Spaziale Italiana, Space Sci Data Ctr, Via Politecn, I-00133 Rome, Italy..
    Cohen-Tanugi, J.
    Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France..
    Costantin, D.
    Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    D'Ammando, F.
    INAF Ist Radioastron, I-40129 Bologna, Italy.;Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy..
    de Palma, F.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.;Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy..
    Di Lalla, N.
    Univ Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Di Mauro, M.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Di Venere, L.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Dominguez, A.
    Univ Complutense Madrid, Grp Altas Energias, E-28040 Madrid, Spain..
    Favuzzi, C.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Franckowiak, A.
    DESY, D-15738 Zeuthen, Germany..
    Fukazawa, Y.
    Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan..
    Funk, S.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Fusco, P.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Gargano, F.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Gasparrini, D.
    Agenzia Spaziale Italiana, Space Sci Data Ctr, Via Politecn, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Giglietto, N.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Giordano, F.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Giroletti, M.
    INAF Ist Radioastron, I-40129 Bologna, Italy..
    Green, D.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Grenier, I. A.
    Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France..
    Guiriec, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA..
    Holt, C.
    Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.;Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA..
    Horan, D.
    CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Johannesson, G.
    Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland.;NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden..
    Kocevski, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Kuss, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    La Mura, G.
    Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, J.
    Inst Space Sci CSICIEEC, Campus UAB,Carrer Magrans S-N, E-08193 Barcelona, Spain..
    Longo, F.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Loparco, F.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Lubrano, P.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Magill, J. D.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Maldera, S.
    Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Manfreda, A.
    Univ Pisa, I-56127 Pisa, Italy..
    Mazziotta, M. N.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Michelson, P. F.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Mizuno, T.
    Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan..
    Monzani, M. E.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Morselli, A.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy..
    Negro, M.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.;Univ Turin, Dipartimento Fis, I-10125 Turin, Italy..
    Nuss, E.
    Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France..
    Omodei, N.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Orienti, M.
    INAF Ist Radioastron, I-40129 Bologna, Italy..
    Orlando, E.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Paliya, V. S.
    Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA..
    Perkins, J. S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Persic, M.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy..
    Pesce-Rollins, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Piron, F.
    Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France..
    Principe, G.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Racusin, J. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Raino, S.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Rando, R.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Razzano, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Razzaque, S.
    Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa..
    Reimer, A.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Reimer, O.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Sgro, C.
    Siskind, E. J.
    NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA..
    Spandre, G.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Spinelli, P.
    Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Tak, D.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Thayer, J. B.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA..
    Torres, D. F.
    ICREA, E-08010 Barcelona, Spain..
    Tosti, G.
    Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy..
    Valverde, J.
    CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Vogel, M.
    Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA..
    Wood, K.
    Praxis Inc, Alexandria, VA 22303 USA.;Naval Res Lab, Washington, DC 20375 USA..
    Investigating the Nature of Late-time High-energy GRB Emission through Joint Fermi/Swift Observations2018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 863, no 2, article id 138Article in journal (Refereed)
    Abstract [en]

    We use joint observations by the Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveals that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the nondetected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1-100 GeV energy range considered for this analysis.

  • 27. Ajello, M
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics. AlbaNova, Sweden.
    Yassine, M.
    et al.,
    DEEP MORPHOLOGICAL AND SPECTRAL STUDY OF THE SNR RCW 86 WITH FERMI-LAT2016In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 819, no 2, article id 98Article in journal (Refereed)
    Abstract [en]

    RCW 86 is a young supernova remnant (SNR) showing a shell-type structure at several wavelengths and is thought to be an efficient cosmic-ray (CR) accelerator. Earlier Fermi Large Area Telescope results reported the detection of.-ray emission coincident with the position of RCW 86 but its origin (leptonic or hadronic) remained unclear due to the poor statistics. Thanks to 6.5 years of data acquired by the Fermi-LAT and the new event reconstruction Pass 8, we report the significant detection of spatially extended emission coming from RCW 86. The spectrum is described by a power-law function with a very hard photon index (Gamma= 1.42 +/- 0.1(stat) +/- 0.06(syst)) in the 0.1-500 GeV range and an energy flux above 100 MeV of (2.91. 0.8(stat). 0.12(syst)) 10-11 erg cm(-2) s(-1). Gathering all the available multiwavelength (MWL) data, we perform a broadband modeling of the nonthermal emission of RCW 86 to constrain parameters of the nearby medium and bring new hints about the origin of the gamma-ray emission. For the whole SNR, the modeling favors a leptonic scenario in the framework of a two-zone model with an average magnetic field of 10.2 +/- 0.7 mu G and a limit on the maximum energy injected into protons of 2. x. 10(49) erg for a density of 1 cm(-3). In addition, parameter values are derived for the north-east and south-west (SW) regions of RCW 86, providing the first indication of a higher magnetic field in the SW region.

  • 28. Ajello, M.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Zimmer, S.
    et al.,
    Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 16, article id 161101Article in journal (Refereed)
    Abstract [en]

    We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10-12 GeV-1 for ALP masses 0.5ma5 neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe.

  • 29. Clark, C J
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, L.
    KTH.
    Yassine, M.
    et al.,
    PSR J1906+0722: AN ELUSIVE GAMMA-RAY PULSAR2015In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 809, no 1, article id L2Article in journal (Refereed)
    Abstract [en]

    We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared as the most significant remaining unidentified gamma-ray source without a known association in the second Fermi-LAT source catalog (2FGL) and was among the top 10 most significant unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic, isolated pulsar, with a spin frequency of 8.9 Hz, a characteristic age of 49 kyr, and spin-down power 1.0 x 10(36) erg s(-1). In 2009 August it suffered one of the largest glitches detected from a gamma-ray pulsar (Delta f/f approximate to 4.5 x 10(-6)). Remaining undetected in dedicated radio follow-up observations, the pulsar is likely radio-quiet. An off-pulse analysis of the gamma-ray flux from the location of PSR J1906+0722 revealed the presence of an additional nearby source, which may be emission from the interaction between a neighboring supernova remnant and a molecular cloud. We discuss possible effects which may have hindered the detection of PSR J1906+0722 in previous searches and describe the methods by which these effects were mitigated in this survey. We also demonstrate the use of advanced timing methods for estimating the positional, spin and glitch parameters of difficult-to-time pulsars such as this.

  • 30. Kamae, Tuneyoshi
    et al.
    Andersson, Viktor
    KTH, School of Engineering Sciences (SCI), Physics.
    Arimoto, Makoto
    Axelsson, Magnus
    Bettolo, Cecilia Marini
    KTH, School of Engineering Sciences (SCI), Physics.
    Björnsson, Claes-Ingvar
    Bogaert, Gilles
    Carlson, Per
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Craig, William
    Ekeberg, Tomas
    KTH, School of Engineering Sciences (SCI), Physics.
    Engdegård, Olle
    KTH, School of Engineering Sciences (SCI), Physics.
    Fukazawa, Yasushi
    Gunji, Shuichi
    Hjalmarsdotter, Linnea
    Iwan, Bianca
    KTH, School of Engineering Sciences (SCI), Physics.
    Kanai, Yoshikazu
    Kataoka, Jun
    Kawai, Nobuyuki
    Kazejev, Jaroslav
    KTH, School of Engineering Sciences (SCI), Physics.
    Kiss, Mozsi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics.
    Madejski, Grzegorz
    Mizuno, Tsunefumi
    Ng, Johnny
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rydé, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Suhonen, Markus
    KTH, School of Engineering Sciences (SCI), Physics.
    TaJima, Hiroyasu
    Takahashi, Hiromitsu
    Takahashi, Tadayuki
    Tanaka, Takuya
    Thurston, Timothy
    Ueno, Masaru
    Varneri, Gary
    Yamamoto, Kazuhide
    Yamashita, Yuichiro
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Yoshida, Hiroaki
    PoGOLite - A high sensitivity balloon-borne soft gamma-ray polarimeter2008In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 30, no 2, p. 72-84Article in journal (Refereed)
    Abstract [en]

    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow Held of view (FWHM = 1.25 msr, 2.0 deg x 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (similar to 228 cm(2) at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm(2) indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a similar to 100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter.

  • 31. Kanai, Y.
    et al.
    Kataoka, J.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rydstrom, S.
    Takahashi, T.
    Thurston, T. S.
    Varner, G.
    Kiss, Mózsi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Marini Bettolo, Cecilia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV2009In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 600, no 3, p. 609-617Article in journal (Refereed)
    Abstract [en]

    The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within similar to 5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers.

  • 32. Racusin, J. L.
    et al.
    Burns, E.
    Goldstein, A.
    Connaughton, V.
    Wilson-Hodge, C. A.
    Jenke, P.
    Blackburn, L.
    Briggs, M. S.
    Broida, J.
    Camp, J.
    Christensen, N.
    Hui, C. M.
    Littenberg, T.
    Shawhan, P.
    Singer, L.
    Veitch, J.
    Bhat, P. N.
    Cleveland, W.
    Fitzpatrick, G.
    Gibby, M. H.
    von Kienlin, A.
    McBreen, S.
    Mailyan, B.
    Meegan, C. A.
    Paciesas, W. S.
    Preece, R. D.
    Roberts, O. J.
    Stanbro, M.
    Veres, P.
    Zhang, B. -B
    Ackermann, M.
    Albert, A.
    Atwood, W. B.
    Axelsson, M.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bregeon, J.
    Bruel, P.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Charles, E.
    Chiang, J.
    Ciprini, S.
    Costanza, F.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Drell, P. S.
    Favuzzi, C.
    Ferrara, E. C.
    Focke, W. B.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Gill, R.
    Giroletti, M.
    Glanzman, T.
    Granot, J.
    Green, D.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Jogler, T.
    Johannesson, G.
    Kamae, T.
    Kensei, S.
    Kocevski, D.
    Kuss, M.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Malyshev, D.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Smith, D. A.
    Spada, F.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Thayer, J. B.
    Torres, D. F.
    Troja, E.
    Uchiyama, Y.
    Vianello, G.
    Wood, K. S.
    Wood, M.
    SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITOR. AND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW1512262017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 835, no 1, article id 82Article in journal (Refereed)
    Abstract [en]

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.

  • 33. Sitarek, J.
    et al.
    González, J. B.
    Ramazani, V. F.
    Lindfors, E.
    Pedaletti, G.
    Tavecchio, F.
    Acosta, M. V.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Baliyan, K.
    Kaur, N.
    Sameer,
    Jorstad, S.
    Raiteri, C.
    Collaborations, MAGIC and Fermi-LAT
    MAGIC observations of variable very-high-energy gamma-ray emission from PKS1510-089 during May 2015 outburst2017In: Proceedings of Science, Sissa Medialab Srl , 2017Conference paper (Refereed)
    Abstract [en]

    PKS1510-089 is a flat spectrum radio quasar located at a redshift of 0.36. It is one of only a few such sources detected in very-high-energy (VHE, >100 GeV) gamma rays. Though PKS1510-089 is highly variable at GeV energies, until recently no variability has been observed in the VHE band. In 2015 May PKS1510-089 showed a high state in optical and in the GeV range. A VHE gamma-ray flare was detected with MAGIC at that time, showing the first instance of VHE gamma-ray flux variability on the time scale of days in this source. We will present the MAGIC results from this observation, discuss their temporal and spectral properties in the multi-wavelength context and present modelling of such emission in the external Compton scenario. 

  • 34. Spingola, C.
    et al.
    Dallacasa, D.
    Orienti, M.
    Giroletti, M.
    McKean, J. P.
    Cheung, C. C.
    Hovatta, T.
    Ciprini, S.
    D'Ammando, F.
    Falco, E.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. The Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Max-Moerbeck, W.
    Ojha, R.
    Readhead, A. C. S.
    Richards, J. L.
    Scargle, J.
    Radio follow-up of the gamma-ray flaring gravitational lens JVAS B0218+3572016In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 457, no 2, p. 2263-2271Article in journal (Refereed)
    Abstract [en]

    We present results on multifrequency Very Long Baseline Array (VLBA) monitoring observations of the double-image gravitationally lensed blazar JVAS B0218+357. Multi-epoch observations started less than one month after the gamma-ray flare detected in 2012 by the Large Area Telescope on board Fermi, and spanned a 2-month interval. The radio light curves did not reveal any significant flux density variability, suggesting that no clear correlation between the high-energy and low-energy emission is present. This behaviour was confirmed also by the long-term Owens Valley Radio Observatory monitoring data at 15 GHz. The milliarcsecond-scale resolution provided by the VLBA observations allowed us to resolve the two images of the lensed blazar, which have a core-jet structure. No significant morphological variation is found by the analysis of the multi-epoch data, suggesting that the region responsible for the gamma-ray variability is located in the core of the active galactic nuclei, which is opaque up to the highest observing frequency of 22 GHz.

  • 35. Takahashi, H.
    et al.
    Matsuoka, M.
    Umeki, Y.
    Yoshida, H.
    Tanaka, T.
    Mizuno, T.
    Fukazawa, Y.
    Kamae, T.
    Madejski, G.
    Tajima, H.
    Kiss, Mózsi Bank
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Bettolo, Cecilia Marini
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rydström, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kurita, K.
    Kanai, Y.
    Arimoto, M.
    Ueno, M.
    Kataoka, J.
    Kawai, N.
    Axelsson, Magnus
    Stockholm University.
    Hjalmarsdotter, L.
    Bogaert, G.
    Gunji, S.
    Katsuta, J.
    Takahashi, T.
    Varner, G.
    Yuasa, T.
    The Polarized Gamma-Ray Observer, PoGOLite2010In: Transactions of the Japanese Society for Artificial Intelligence, Aerospace Technology Japan, Vol. 8Article in journal (Refereed)
    Abstract [en]

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object in the energy-range 25–80 keV. During a beam test at KEK-PF in 2008, 19 detector units and one anti-coincidence detector were assembled, and a 50 keV X-ray beam with a polarization degree of ∼90% was irradiated at the center unit. Signals from all 20 units were fed into flight-version electronics consisting of six circuit boards (four waveform digitizer boards, one digital I/O board and one router board) and one microprocessor (SpaceCube), which communicate using a SpaceWire interface. One digitizer board, which can associate up to 8 detectors, outputs a trigger signal. The digital I/O board handles the trigger and returns a data acquisition request if there is no veto signal (upper or pulse-shape discriminators) from any detector unit. This data acquisition system worked well, and the modulation factor was successfully measured to be ∼34%. These results confirmed the capabilities of the data-acquisition system for a “pathfinder” flight planned in 2010.

  • 36. Takahashi, H.
    et al.
    Matsuoka, M.
    Umeki, Y.
    Yoshida, H.
    Tanaka, T.
    Mizuno, T.
    Fukazawa, Y.
    Kamae, T.
    Madejski, G.
    Tajima, H.
    Kiss, Mózsi Bank
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Marini Bettolo, Cecilia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rydstrom, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kurita, K.
    Kanai, Y.
    Arimoto, M.
    Ueno, M.
    Kataoka, J.
    Kawai, N.
    Axelsson, M.
    Hjalmarsdotter, L.
    Bogaert, G.
    Gunji, S.
    Takahashi, T.
    Varner, G.
    Yuasa, T.
    Beam test results of the polarized gamma-ray observer, PoGOLite2008In: 2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2008, p. 732-736Conference paper (Refereed)
    Abstract [en]

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object in the energy range 25 #x2013;80 keV. During a beam test at KEK-PF in February 2008, 20 detector units were assembled, and a 50 keV X-ray beam with a polarization degree of #x223C;90% was irradiated at the center unit. Signals from all 20 units were fed into flightversion electronics consisting of six circuit boards (four waveform digitizer boards, one digital I/O board and one router board) and one microprocessor (SpaceCube), which communicate using a SpaceWire interface. One digitizer board, which can associate up to 8 PDCs, outputs a trigger signal. The digital I/O board handles the trigger and returns a data acquisition request if there is no veto signal (upper or pulse-shape discriminators) from any detector unit. This data acquisition system worked well, and the modulation factor was successfully measured to be #x223C;34%. These results confirmed the capabilities of both detector and data-acquisition system for a pathfinder flight planned in 2010.

  • 37. Takahashi, H.
    et al.
    Yonetani, M.
    Matsuoka, M.
    Mizuno, T.
    Fukazawa, Y.
    Yanagida, T.
    Fujimoto, Y.
    Yokota, Y.
    Yoshikawa, A.
    Kawaguchi, N.
    Ishizu, S.
    Fukuda, K.
    Suyama, T.
    Watanabe, K.
    Tajima, H.
    Kanai, Y.
    Kawai, N.
    Kataoka, J.
    Katsuta, J.
    Takahashi, T.
    Gunji, S.
    Axelsson, Magnus
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kiss, Mózsi Bank
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kole, Merlin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mallol, Parera Pau
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rydström, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Olofsson, G.
    Floren, H.
    Kamae, T.
    Madejski, G.
    Varner, G.
    A thermal-neutron detector with a phoswich system of LiCaAlF6 and BGO crystal scintillators onboard PoGOLite2010In: 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010, 2010, p. 32-37Conference paper (Refereed)
    Abstract [en]

    To measure the flux of atmospheric neutrons and study the neutron contribution to the background of the main detector of the PoGOLite (Polarized Gamma-ray Observer) balloon-borne experiment, a thermal-neutron detector with a phoswich system of LiCaAlF6 (Eu) and BGO crystal scintillators is developed. The performance to separate thermal-neutron events from those of gamma-rays and charged particles is validated with 252Cf on ground. The detector is attached to the PoGOLite instrument and is launched in 2011 from the Esrange facility in the North of Sweden. Although the emission wavelength of the LiCaAlF6 (Ce) is 300 nm and overlaps with the absorption wavelength of the BGO, the phoswich capability of the LiCaAlF6 (Ce) with the BGO is also confirmed with installing a waveform shifter.

1 - 37 of 37
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf