Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Molan
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Xu, Shaohui
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Thermoelectric-Generator-Based DC-DC Conversion Networks for Automotive Applications2011In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 40, no 5, p. 1136-1143Article in journal (Refereed)
    Abstract [en]

    Maximizing electrical energy generation through waste heat recovery is one of the modern research questions within automotive applications of thermoelectric (TE) technologies. This paper proposes a novel concept of distributed multisection multilevel DC-DC conversion networks based on thermoelectric generators (TEGs) for automotive applications. The concept incorporates a bottom-up design approach to collect, convert, and manage vehicle waste heat efficiently. Several state-of-the-art thermoelectric materials are analyzed for the purpose of power generation at each waste heat harvesting location on a vehicle. Optimal materials and TE couple configurations are suggested. Moreover, a comparison of prevailing DC-DC conversion techniques was made with respect to applications at each conversion level within the network. Furthermore, higher-level design considerations are discussed according to system specifications. Finally, a case study is performed to compare the performance of the proposed network and a traditional single-stage system. The results show that the proposed network enhances the system conversion efficiency by up to 400%.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf