Change search
Refine search result
12345 1 - 50 of 222
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alfsen, K. H.
    et al.
    Bonifazi, C.
    Pedersen, A.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Electric field and plasma observations near the magnetopause and bow shock during a rapid compression.1984In: Achievements of the International Magnetospheric Study (IMS), p. 99-104Article in journal (Refereed)
    Abstract [en]

    A fast compressional motion of the magnetopause resulting from the interaction of an interplanetary shock and the Earth's magnetosphere is discussed. The ISEE-1 and 2 satellites were in the frontside magnetosphere before the shock. A magnetosonic wave front, the magnetopause, and the bow shock passed them in a very short time. By a combination of electric and magnetic field data it is possible to determine the magnetosonic and the magnetopause velocity. -from STAR, 23(14), 1985

  • 2. ALFSEN, KH
    et al.
    BONIFAZI, C
    PEDERSEN, A
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    INTERACTION BETWEEN AN INTERPLANETARY SHOCK AND THE EARTHS MAGNETOSPHERE ON AUGUST 27, 1978 - ISEE-1 ELECTRIC-FIELD AND ISEE-2 PLASMA OBSERVATIONS1984In: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol. 89, no NA10, p. 8863-8871Article in journal (Refereed)
  • 3. ALFVEN, H
    et al.
    AXNAS, I
    BRENNING, N
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    VOYAGER SATURNIAN RING MEASUREMENTS AND THE EARLY HISTORY OF THE SOLAR-SYSTEM1986In: PLANETARY AND SPACE SCIENCE, ISSN 0032-0633, Vol. 34, no 2, p. 145-154Article in journal (Refereed)
  • 4.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Axnäs, Ingvar
    KTH, Superseded Departments.
    Brenning, Nils
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Further Explorations of Cosmogonic Shadow Effects in the Saturnian Rings1985Report (Other academic)
  • 5.
    Alfvén, Hannes
    et al.
    KTH, Superseded Departments.
    Axnäs, Ingvar
    KTH, Superseded Departments.
    Brenning, Nils
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Voyager Saturnian Ring Measurements and the Early History of the Solar System1985Report (Other academic)
  • 6. Alm, L.
    et al.
    André, M.
    Vaivads, Andris
    Khotyaintsev, Y. V.
    Torbert, R. B.
    Burch, J. L.
    Ergun, R. E.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Russell, C. T.
    Giles, B. L.
    Mauk, B. H.
    Magnetotail Hall Physics in the Presence of Cold Ions2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 20, p. 10,941-10,950Article in journal (Refereed)
    Abstract [en]

    We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E × B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for ∼30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j × B term of the generalized Ohm's law, with significant contributions from the ∇·P e and v c ×B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics.

  • 7. Alm, L.
    et al.
    Argall, M. R.
    Torbert, R. B.
    Farrugia, C. J.
    Burch, J. L.
    Ergun, R. E.
    Russell, C. T.
    Strangeway, R. J.
    Khotyaintsev, Y. V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Giles, B. L.
    Shuster, J.
    EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 3, p. 3262-3276Article in journal (Refereed)
    Abstract [en]

    We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.

  • 8. Alm, L.
    et al.
    Farrugia, C. J.
    Paulson, K. W.
    Argall, M. R.
    Torbert, R. B.
    Burch, J. L.
    Ergun, R. E.
    Russell, C. T.
    Strangeway, R. J.
    Khotyaintsev, Y. V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Giles, B. L.
    Differing Properties of Two Ion-Scale Magnetopause Flux Ropes2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 114-131Article in journal (Refereed)
    Abstract [en]

    In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion-scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub-d(i) spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.

  • 9. Andre, M.
    et al.
    Behlke, R.
    Wahlund, J. E.
    Vaivads, A.
    Eriksson, A. I.
    Tjulin, A.
    Carozzi, T. D.
    Cully, C.
    Gustafsson, G.
    Sundkvist, D.
    Khotyaintsev, Y.
    Cornilleau-Wehrlin, N.
    Rezeau, L.
    Maksimovic, M.
    Lucek, E.
    Balogh, A.
    Dunlop, M.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory.
    Mozer, F.
    Pedersen, A.
    Fazakerley, A.
    Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause2001In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 19, no 12-okt, p. 1471-1481Article in journal (Refereed)
    Abstract [en]

    Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.

  • 10. Andre, M.
    et al.
    Li, W.
    Toledo-Redondo, S.
    Khotyaintsev, Yu. V.
    Vaivads, Andris
    Graham, D. B.
    Norgren, C.
    Burch, J.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Ergun, R.
    Torbert, R.
    Magnes, W.
    Russell, C. T.
    Giles, B.
    Moore, T. E.
    Chandler, M. O.
    Pollock, C.
    Young, D. T.
    Avanov, L. A.
    Dorelli, J. C.
    Gershman, D. J.
    Paterson, W. R.
    Lavraud, B.
    Saito, Y.
    Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 13, p. 6705-6712Article in journal (Refereed)
    Abstract [en]

    Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.

  • 11. Andriopoulou, M.
    et al.
    Nakamura, R.
    Torkar, K.
    Baumjohann, W.
    Torbert, R. B.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Khotyaintsev, Y. V.
    Dorelli, J.
    Burch, J. L.
    Russell, C. T.
    Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 10, p. 4858-4864Article in journal (Refereed)
    Abstract [en]

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  • 12.
    Andriopoulou, Maria
    et al.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Nakamura, Rumi
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Wellenzohn, Simon
    Karl Franzens Univ Graz, Inst Geophys Astrophys & Meteorol, Graz, Austria..
    Torkar, Klaus
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Baumjohann, Wolfgang
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Khotyaintsev, Yuri V.
    Swedish Inst Space Phys IRF, Uppsala, Sweden..
    Dorelli, John
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA..
    Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 4, p. 2620-2629Article in journal (Refereed)
    Abstract [en]

    Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.

  • 13. Argall, M. R.
    et al.
    Paulson, K.
    Alm, L.
    Rager, A.
    Dorelli, J.
    Shuster, J.
    Wang, S.
    Torbert, R. B.
    Vaith, H.
    Dors, I.
    Chutter, M.
    Farrugia, C.
    Burch, J.
    Pollock, C.
    Giles, B.
    Gershman, D.
    Lavraud, B.
    Russell, C. T.
    Strangeway, R.
    Magnes, W.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Khotyaintsev, Yu. V.
    Ergun, R. E.
    Ahmadi, N.
    Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 146-162Article in journal (Refereed)
    Abstract [en]

    We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.

  • 14.
    Artemyev, A. V.
    et al.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.;RAS, Space Res Inst, Moscow, Russia..
    Pritchett, P. L.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA..
    Angelopoulos, V.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Zhang, X. -J
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Lu, S.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Runov, A.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA..
    Wellenzohn, S.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.;Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Lindqvist, Per-Arne
    KTH.
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 12, p. 5836-5844Article in journal (Refereed)
    Abstract [en]

    Near-Earth magnetic reconnection reconfigures the magnetotail and produces strong plasma flows that transport plasma sheet particles and electromagnetic energy to the inner magnetosphere. An essential element of such a reconfiguration is strong, transient field-aligned currents. These currents, believed to be generated within the plasma sheet and closed at the ionosphere, are responsible for magnetosphere-ionosphere coupling during substorms. We use conjugate measurements from Magnetospheric Multiscale (MMS) at the plasma sheet boundary (around x approximate to- 10R(E)) and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) at the equator (around x approximate to- 60R(E)) to explore the potential generation region of these currents. We find a clear correlation between the field-aligned current intensity measured by MMS and the tailward plasma sheet flows measured by ARTEMIS. To better understand the origin of this correlation, we compare spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection. The comparison reveals that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between MMS (near-Earth) and ARTEMIS (at lunar distance). A weak correlation between the field-aligned current intensity at MMS and earthward flow magnitudes at ARTEMIS suggests that distant magnetotail reconnection does not significantly contribute to the generation of the observed near-Earth currents. Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. Plain Language Summary Field-aligned currents connect the Earth magnetotail and ionosphere, proving energy and information transport from the region where main energy release process, magnetic reconnection, occurs to the region where the collisional energy dissipation takes place. Therefore, investigation and modeling of the field-aligned current generation is important problem of the magnetosphere plasma physics. However, field-aligned current investigation requires simultaneous observations of reconnection signatures in the magnetotail and at high latitudes. Simultaneous and conjugate operation of two multispacecraft missions, Magnetospheric Multiscale and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun, for the first time provide an opportunity for such investigation. Combining spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection, we demonstrate that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between near-Earth (Magnetospheric Multiscale location) and lunar distant tail (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun location). Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system.

  • 15.
    Block, Lars P
    et al.
    KTH, Superseded Departments.
    Fälthammar, Carl-Gunne
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Marklund, Göran
    KTH, Superseded Departments.
    Mozer, F. S.
    Pedersen, A.
    Measurement of Quasi-Static and Low Frequency Electric Fields on the Viking Satellite1987Report (Other academic)
  • 16.
    Block, Lars P
    et al.
    KTH, Superseded Departments.
    Fälthammar, Carl-Gunne
    KTH, Superseded Departments.
    Lindqvist, Per-Arne
    KTH, Superseded Departments.
    Marklund, Göran
    KTH, Superseded Departments.
    Mozer, F. S.
    KTH, Superseded Departments.
    Pedersen, A.
    KTH, Superseded Departments.
    Potemra, T. A.
    KTH, Superseded Departments.
    Zanetti, L. J.
    Electric Field Measurements on Viking: First Results1987Report (Other academic)
  • 17.
    Block, Lars P
    et al.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Fälthammar, Carl-Gunne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Mozer, F.S.
    Pedersen, A.
    Potemra, T.A.
    Zanetti, L.J.
    Electric field measurements on Viking - 1st results1987In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 14, p. 435-438Article in journal (Refereed)
  • 18.
    Blomberg, Lars G.
    et al.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Eriksson, Stefan
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Cumnock, Judy A.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Yamauchi, M.
    Clemmons, J. H.
    Marklund, Göran T.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Karlsson, Tomas
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lundin, R.
    Solar windmagnetosphere-ionosphere coupling: an event study based on Freja data2004In: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 66, no 5, p. 375-380Article in journal (Refereed)
    Abstract [en]

    Freja data are used to study the relative contributions from the high-latitude (reconnection/direct entry) and low-latitude (viscous interaction) dynamos to the cross-polar potential drop. Convection streamlines which are connected to the high-latitude dynamo may be identified from dispersed magnetosheath ions not only in the cusp/cleft region itself but also several degrees poleward of it. This fact, together with Freja's orbital geometry allows us to infer the potential drop from the high-latitude dynamo as well as to obtain a lower limit to the potential drop from the low-latitude dynamo for dayside Freja passes. All cases studied here are for active magnetospheric conditions. The Freja data suggest that under these conditions at least one third of the potential is generated in the low-latitude dynamo. These observations are consistent with earlier observations of the potential across the low-latitude boundary layer if we assume that the low-latitude dynamo region extends over several tens of Earth radii in the antisunward direction along the tail flanks, and that the majority of the potential drop derives from the sun-aligned component of the electric field rather than from its cross-boundary component, or equivalently, that the centre of the dynamo region is located quite far down tail. A possible dynamo geometry is illustrated.

  • 19.
    Blomberg, Lars G.
    et al.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran T.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Primdahl, F.
    Brauer, P.
    Bylander, Lars
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. KTH, Superseded Departments, Alfvén Laboratory.
    Cumnock, Judy
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. KTH, Superseded Departments, Alfvén Laboratory.
    Eriksson, Stefan
    KTH, Superseded Departments, Alfvén Laboratory.
    Ivchenko, Nickolay V.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Karlsson, Tomas
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Kullen, Anita
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. KTH, Superseded Departments, Alfvén Laboratory.
    Merayo, J. M. G.
    Pedersen, E. B.
    Petersen, J. R.
    EMMA - the electric and magnetic monitor of the aurora on Astrid-22004In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 22, no 1, p. 115-123Article in journal (Refereed)
    Abstract [en]

    The Astrid-2 mission has dual primary objectives. First, it is an orbiting instrument platform for studying auroral electrodynamics. Second, it is a technology demonstration of the feasibility of using micro-satellites for innovative space plasma physics research. The EMMA instrument, which we discuss in the present paper, is designed to provide simultaneous sampling of two electric and three magnetic field components up to about 1 kHz. The spin plane components of the electric field are measured by two pairs of opposing probes extended by wire booms with a separation distance of 6.7 m. The probes have titanium nitride (TiN) surfaces. which has proved to be a material with excellent properties for providing good electrical contact between probe and plasma. The wire booms are of a new design in which the booms in the stowed position are wound around the exterior of the spacecraft body. The boom system was flown for the first time on this mission and worked flawlessly. The magnetic field is measured by a tri-axial fluxgate sensor located at the tip of a rigid. hinged boom extended along the spacecraft spin axis and facing away from the Sun. The new advanced-design fluxgate magnetometer uses digital signal processors for detection and feedback, thereby reducing the analogue circuitry to a minimum. The instrument characteristics as well as a brief review of the science accomplished and planned are presented.

  • 20.
    Blomberg, Lars
    et al.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Viking observations of electric fields1992In: Study of the Solar-Terrestrial System, 1992, Vol. 346, p. 269-274Conference paper (Other academic)
  • 21.
    Blomberg, Lars
    et al.
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Bylander, Lars
    KTH, Superseded Departments, Alfvén Laboratory. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Atrid-2: An advanced auroral microprobe1999Other (Other academic)
    Abstract [en]

    Astri-2 is an advanced auroral microprobe with dual primary mission objectives; to do high-quality in situ measurements of the physical processes behind the aurora, and to demonstrate the usefulness of microspacecraft as advanced research tools. Mission success will open up entirely new possibilities to carry out low-budget multipoint measurements in near-Earth space. This long-desired kind of in situ measurements are the next major step forward in experimental space physics. Astrid-2 has platform dimensions of 45×45×30 cm, a total mass of just below 30 kg, and carries scientific instruments for measuring local electric and magnetic fields, plasma density and density fluctuations, ions and electrons, as well as photometers for remote imaging of auroral emissions. Attitude determination is provided by a high-precision star imager. Some 250 Mbytes' worth of scientific data will be received each day at the two ground stations. Astrid-2 will be launched as a piggy-back on a Russian Kosmos-3M launcher into an 83 deg inclination circular orbit at 1000 km altitude. Nodal regression will give complete coverage of all local time sectors every 3.5 months. © 1999 Elsevier B.V. All rights reserved.

  • 22.
    Blomberg, Lars
    et al.
    KTH, Superseded Departments, Alfvén Laboratory.
    Marklund, Göran
    KTH, Superseded Departments, Alfvén Laboratory.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory.
    Primdahl, F.
    Brauer, P.
    Bylander, Lars
    KTH, Superseded Departments, Alfvén Laboratory.
    Cumnock, Judy
    KTH, Superseded Departments, Alfvén Laboratory.
    Eriksson, S.
    Ivchenko, Nickolay
    KTH, Superseded Departments, Alfvén Laboratory.
    Karlsson, Tomas
    KTH, Superseded Departments, Alfvén Laboratory.
    Kullen, Anita
    KTH, Superseded Departments, Alfvén Laboratory.
    Merayo, J. M. G.
    Pedersen, E. B.
    Petersen, J. R.
    The EMMA Instrument on the Astrid-2 Micro-Satellite2003Report (Other academic)
  • 23.
    Blomberg, Lars
    et al.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Wahlund, Jan-Erik
    Swedish Institute of Space Physics, Uppsala.
    Cumnock, Judy
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Morooka, Michiko
    Swedish Institute of Space Physics, Uppsala.
    André, Mats
    Swedish Institute of Space Physics, Uppsala.
    Eriksson, Anders
    Swedish Institute of Space Physics, Uppsala.
    Electric Field Diagnostics in the Jovian System: Brief Scientific Case and Instrumentation Overview2006In: Proceedings of the 6th IAA International Conference on Low-Cost Planetary Missions, 2006, p. 335-340Conference paper (Other academic)
    Abstract [en]

    The Jovian plasma environment exhibits a variety of plasma flow interactions with magnetised as well as unmagnetised bodies, making it a good venue for furthering our understanding of solar wind - magnetosphere / ionosphere interactions.

    On an overall scale the solar wind interacts with the Jovian magnetosphere, much like at Earth but with vastly different temporal and spatial scales. Inside the Jovian magnetosphere the co-rotating plasma interacts with the inner moons. The latter interaction is slower and more stable than the corresponding interaction between the solar wind and the planets, and can thus provide additional information on the principles of the interaction mechanisms.

    Because of the wealth of expected low-frequency waves, as well as the predicted quasi-static electric fields and plasma drifts in the interaction regions between different parts of the Jovian system, a most valuable component in future payloads would be a double-probe electric field instrument. Recent developments in low-mass instrumentation facilitate electric field measurements on spinning planetary spacecraft, which we here exemplify.

  • 24. Breuillard, H.
    et al.
    Le Contel, O.
    Chust, T.
    Berthomier, M.
    Retino, A.
    Turner, D. L.
    Nakamura, R.
    Baumjohann, W.
    Cozzani, G.
    Catapano, F.
    Alexandrova, A.
    Mirioni, L.
    Graham, D. B.
    Argall, M. R.
    Fischer, D.
    Wilder, F. D.
    Gershman, D. J.
    Varsani, A.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Khotyaintsev, Yu. V.
    Marklund, G.
    Ergun, R. E.
    Goodrich, K. A.
    Ahmadi, N.
    Burch, J. L.
    Torbert, R. B.
    Needell, G.
    Chutter, M.
    Rau, D.
    Dors, I.
    Russell, C. T.
    Magnes, W.
    Strangeway, R. J.
    Bromund, K. R.
    Wei, H.
    Plaschke, F.
    Anderson, B. J.
    Le, G.
    Moore, T. E.
    Giles, B. L.
    Paterson, W. R.
    Pollock, C. J.
    Dorelli, J. C.
    Avanov, L. A.
    Saito, Y.
    Lavraud, B.
    Fuselier, S. A.
    Mauk, B. H.
    Cohen, I. J.
    Fennell, J. F.
    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 93-103Article in journal (Refereed)
    Abstract [en]

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  • 25. Breuillard, H.
    et al.
    Le Contel, O.
    Retino, A.
    Chasapis, A.
    Chust, T.
    Mirioni, L.
    Graham, D. B.
    Wilder, F. D.
    Cohen, I.
    Vaivads, Andris
    Khotyaintsev, Yu V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran T.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Burch, J. L.
    Torbert, R. B.
    Ergun, R. E.
    Goodrich, K. A.
    Macri, J.
    Needell, J.
    Chutter, M.
    Rau, D.
    Dors, I.
    Russell, C. T.
    Magnes, W.
    Strangeway, R. J.
    Bromund, K. R.
    Plaschke, F.
    Fischer, D.
    Leinweber, H. K.
    Anderson, B. J.
    Le, G.
    Slavin, J. A.
    Kepko, E. L.
    Baumjohann, W.
    Mauk, B.
    Fuselier, S. A.
    Nakamura, R.
    Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 14, p. 7279-7286Article in journal (Refereed)
    Abstract [en]

    Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.

  • 26.
    Breuillard, H.
    et al.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France..
    Matteini, L.
    UPMC Univ Paris 06, Univ Paris Diderot, PSL Res Univ, LESIA Observ Paris,CNRS, Meudon, France..
    Argall, M. R.
    Univ New Hampshire, Durham, NH 03824 USA..
    Sahraoui, F.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France..
    Andriopoulou, M.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Le Contel, O.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France..
    Retino, A.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France..
    Mirioni, L.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France..
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Beijing, Peoples R China..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Yordanova, E.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Vaivads, Andris
    Swedish Inst Space Phys, Uppsala, Sweden..
    Turner, D. L.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Khotyaintsev, Yu. V.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Graham, D. B.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Chasapis, A.
    Univ Delaware, Newark, DE USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Strangeway, R. J.
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Moore, T. E.
    Giles, B. L.
    Paterson, W. R.
    Pollock, C. J.
    Lavraud, B.
    Univ Paul Sabatier, CNRS UMR5277, IRAP, Toulouse, France..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data2018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 859, no 2, article id 127Article in journal (Refereed)
    Abstract [en]

    The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.

  • 27.
    Burch, J. L.
    et al.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Cassak, P. A.
    Univ Virginia, Dept Phys & Astron, Morgantown, WV USA..
    Webster, J. M.
    Rice Univ, Dept Phys & Astron, Houston, TX USA..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Rager, A. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA..
    Hwang, K. -J
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Genestreti, K. J.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Allen, R. C.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Chen, L. -J
    Wang, S.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Le Contel, O.
    Univ Paris Sud, Observ Paris, Lab Phys Plasmas, CNRS,Ecole Polytech,UPMC Univ Paris 06, Paris, France..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Planetary Sci, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth & Planetary Sci, Los Angeles, CA USA..
    Wilder, F. D.
    Graham, D. B.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Hesse, M.
    Univ Bergen, Dept Phys & Technol, Bergen, Norway..
    Drake, J. F.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Swisdak, M.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Price, L. M.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Shay, M. A.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Pollock, C. J.
    Denali Sci, Healy, AK USA..
    Denton, R. E.
    Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA..
    Newman, D. L.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Localized Oscillatory Energy Conversion in Magnetopause Reconnection2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 3, p. 1237-1245Article in journal (Refereed)
    Abstract [en]

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  • 28. Burch, J. L.
    et al.
    Torbert, R. B.
    Phan, T. D.
    Chen, L. -J
    Moore, T. E.
    Ergun, R. E.
    Eastwood, J. P.
    Gershman, D. J.
    Cassak, P. A.
    Argall, M. R.
    Wang, S.
    Hesse, M.
    Pollock, C. J.
    Giles, B. L.
    Nakamura, R.
    Mauk, B. H.
    Fuselier, S. A.
    Russell, C. T.
    Strangeway, R. J.
    Drake, J. F.
    Shay, M. A.
    Khotyaintsev, Yu. V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Wilder, F. D.
    Young, D. T.
    Torkar, K.
    Goldstein, J.
    Dorelli, J. C.
    Avanov, L. A.
    Oka, M.
    Baker, D. N.
    Jaynes, A. N.
    Goodrich, K. A.
    Cohen, I. J.
    Turner, D. L.
    Fennell, J. F.
    Blake, J. B.
    Clemmons, J.
    Goldman, M.
    Newman, D.
    Petrinec, S. M.
    Trattner, K. J.
    Lavraud, B.
    Reiff, P. H.
    Baumjohann, W.
    Magnes, W.
    Steller, M.
    Lewis, W.
    Saito, Y.
    Coffey, V.
    Chandler, M.
    Electron-scale measurements of magnetic reconnection in space2016In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 352, no 6290, p. 1189-+Article, review/survey (Refereed)
    Abstract [en]

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  • 29.
    Burch, J. L.
    et al.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Webster, J. M.
    Rice Univ, Dept Phys & Astron, Houston, TX USA..
    Genestreti, K. J.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Rager, A. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Allen, R. C.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Chen, L. -J
    Wang, S.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Russell, C. T.
    Univ Calif Los Angeles, Earth & Planetary Sci, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Earth & Planetary Sci, Los Angeles, CA USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Jaynes, A. N.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Graham, D. B.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Wilder, F. D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Hwang, K. -J
    Goldstein, J.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 2, p. 1118-1133Article in journal (Refereed)
    Abstract [en]

    This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.

  • 30. Cao, D.
    et al.
    Fu, H. S.
    Cao, J. B.
    Wang, T. Y.
    Graham, D. B.
    Chen, Z. Z.
    Peng, F. Z.
    Huang, S. Y.
    Khotyaintsev, Y. V.
    Andre, M.
    Russell, C. T.
    Giles, B. L.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Torbert, R. B.
    Ergun, R. E.
    Le Contel, O.
    Burch, J. L.
    MMS observations of whistler waves in electron diffusion region2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 9, p. 3954-3962Article in journal (Refereed)
    Abstract [en]

    Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the -300eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations.

  • 31. Cattell, C.
    et al.
    Breneman, A.
    Colpitts, C.
    Dombeck, J.
    Thaller, S.
    Tian, S.
    Wygant, J.
    Fennell, J.
    Hudson, M. K.
    Ergun, Robert
    Russell, C. T.
    Torbert, Roy
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Burch, J.
    Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-132017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 17, p. 8712-8720, article id L074895Article in journal (Refereed)
    Abstract [en]

    Observations from Magnetospheric MultiScale (similar to 8 Re) and Van Allen Probes (similar to 5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts. Plain Language Summary Very fast moving clouds of charged particles are ejected from the Sun when it is active. Shock waves often develop at the cloud front as it plows through the solar wind. When the shock hits the Earth's magnetic field, it can push the Earth's magnetic shield inside the distance where many communication and weather satellites orbit. The energy associated with the shock can also very rapidly increase the energy of electrons trapped in the Earth's magnetic field in the Van Allen Radiation belts. These electrons can damage satellites. We have used four satellites arrayed at different locations on the dayside of the Earth's magnetic field to show, for the first time, that small shocks have a different effect than the large shocks that are usually studied but that even small shocks can produce relativistic electrons.

  • 32. Chasapis, A.
    et al.
    Matthaeus, W. H.
    Parashar, T. N.
    Lecontel, O.
    Retinò, A.
    Breuillard, H.
    Khotyaintsev, Y.
    Vaivads, Andris
    Lavraud, B.
    Eriksson, E.
    Moore, T. E.
    Burch, J. L.
    Torbert, R. B.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Ergun, R. E.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Goodrich, K. A.
    Wilder, F. D.
    Chutter, M.
    Needell, J.
    Rau, D.
    Dors, I.
    Russell, C. T.
    Le, G.
    Magnes, W.
    Strangeway, R. J.
    Bromund, K. R.
    Leinweber, H. K.
    Plaschke, F.
    Fischer, D.
    Anderson, B. J.
    Pollock, C. J.
    Giles, B. L.
    Paterson, W. R.
    Dorelli, J.
    Gershman, D. J.
    Avanov, L.
    Saito, Y.
    Electron Heating at Kinetic Scales in Magnetosheath Turbulence2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 836, no 2, article id 247Article in journal (Refereed)
    Abstract [en]

    We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.

  • 33. Chen, L. -J
    et al.
    Hesse, M.
    Wang, S.
    Gershman, D.
    Ergun, R. E.
    Burch, J.
    Bessho, N.
    Torbert, R. B.
    Giles, B.
    Webster, J.
    Pollock, C.
    Dorelli, J.
    Moore, T.
    Paterson, W.
    Lavraud, B.
    Strangeway, R.
    Russell, C.
    Khotyaintsev, Y.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Avanov, L.
    Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 5, p. 5235-5246Article in journal (Refereed)
    Abstract [en]

    An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.

  • 34. Chen, L. -J
    et al.
    Wang, S.
    Wilson, L. B. , I I I
    Schwartz, S.
    Bessho, N.
    Moore, T.
    Gershman, D.
    Giles, B.
    Malaspina, D.
    Wilder, F. D.
    Ergun, R. E.
    Hesse, M.
    Lai, H.
    Russell, C.
    Strangeway, R.
    Torbert, R. B.
    Vinas, F. -A
    Burch, J.
    Lee, S.
    Pollock, C.
    Dorelli, J.
    Paterson, W.
    Ahmadi, N.
    Goodrich, K.
    Lavraud, B.
    Le Contel, O.
    Khotyaintsev, Yu.V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Boardsen, S.
    Wei, H.
    Le, A.
    Avanov, L.
    Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 22, article id 225101Article in journal (Refereed)
    Abstract [en]

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. © 2018 American Physical Society.

  • 35.
    Cozzani, Giulia
    et al.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.;Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy..
    Retino, A.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France..
    Califano, F.
    Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy..
    Alexandrova, A.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France..
    Contel, O. Le
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France..
    Khotyaintsev, Y.
    Swedish Inst Space Phys, SE-75121 Uppsala, Sweden..
    Vaivads, Andris
    Swedish Inst Space Phys, SE-75121 Uppsala, Sweden..
    Fu, H. S.
    Beihang Univ, Sch Space & Environm, Beijing 100083, Peoples R China..
    Catapano, F.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.;Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, CS, Italy..
    Breuillard, H.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.;Univ Orleans, UMR 7328, CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans, France..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria..
    Fuseher, S.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ Texas San Antonio, San Antonio, TX 78238 USA..
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA..
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection2019In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 99, no 4, article id 043204Article in journal (Refereed)
    Abstract [en]

    The electron diffusion region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental difficulties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric Multiscale (MMS) spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multipoint measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.

  • 36.
    Denton, R. E.
    et al.
    Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA..
    Sonnerup, B. U. O.
    Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Hasegawa, H.
    JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Phan, T. -D
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Torbert, R. B.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA..
    Burch, J. L.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA..
    Vines, S. K.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.;Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD USA..
    Determining L-M-N Current Sheet Coordinates at the Magnetopause From Magnetospheric Multiscale Data2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 3, p. 2274-2295Article in journal (Refereed)
    Abstract [en]

    We discuss methods to determine L-M-N coordinate systems for current sheet crossings observed by the Magnetospheric Multiscale (MMS) spacecraft mission during ongoing reconnection, where e(L) is the direction of the reconnecting component of the magnetic field, B, and e(N) is normal to the magnetopause. We present and test a new hybrid method, with e(L) estimated as the maximum variance direction of B (MVAB) and e(N) as the direction of maximum directional derivative of B, and then adjust these directions to be perpendicular. In the best case, only small adjustment is needed. Results from this method, applied to an MMS crossing of the dayside magnetopause at 1305:45UT on 16 October 2015, are discussed and compared with those from other methods for which e(N) is obtained by other means. Each of the other evaluations can be combined with e(L) from MVAB in a generalized hybrid approach to provide an L-M-N system. The quality of the results is judged by eigenvalue ratios, constancy of directions using different data segments and methods, and expected sign and magnitude of the normal component of B. For this event, the hybrid method appears to produce e(N) accurate to within less than 10 degrees. We discuss variance analysis using the electric current density, J, or the J x B force, which yield promising results, and minimum Faraday residue analysis and MVAB alone, which can be useful for other events. We also briefly discuss results from our hybrid method and MVAB alone for a few other MMS reconnection events. Plain Language Summary We discuss methods for determining coordinate systems in order to study magnetic reconnection events at the magnetopause, the boundary between the ionized gas in the region of space dominated by the Earth's magnetic field and the ionized gas coming from the solar wind. We introduce a new method that combines results from multiple methods in order to determine the three coordinate directions in space. We demonstrate this method by applying it to an event observed by the Magnetospheric Multiscale spacecraft on 16 October 2015 and at other times.

  • 37. DUBOULOZ, N
    et al.
    POTTELETTE, R
    MALINGRE, M
    HOLMGREN, G
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    DETAILED ANALYSIS OF BROAD-BAND ELECTROSTATIC NOISE IN THE DAYSIDE AURORAL-ZONE1991In: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, ISSN 0148-0227, Vol. 96, no A3, p. 3565-3579Article in journal (Refereed)
    Abstract [en]

    The great number of bursts of broadband electrostatic noise (BEN) recorded during crossings of the dayside auroral zone by the Viking satellite enables their statistical study. The angular distribution of BEN with respect to the Earth's magnetic field is shown to be most likely isotropic, implying that it cannot consist of a unique linear plasma mode. Most of the bursts evidence a power law spectrum from the lower hybrid and ion plasma frequencies up to frequencies sometimes much higher than the electron plasma frequency, suggesting the presence of nonlinear effects. This is confirmed by their high intensity, and by the correlation between their amplitude and their frequency extension. BEN emissions are associated with ion conical distributions and with field-aligned electron beams. Although most of the power is concentrated at very low frequencies and around the lower hybrid and ion plasma frequencies, electron acoustic and beam mode waves may contribute to the high-frequency extension of BEN. The most intense BEN emissions are also correlated with sharp cold plasma density gradients and probably involve drift instabilities. Strong quasi-static perpendicular electric fields, which induce high-speed plasma flows, are also measured, so that the Doppler effect may contribute to the broadening of the BEN spectrum.

  • 38.
    Eastwood, J. P.
    et al.
    Imperial Coll London, Blackett Lab, London, England..
    Mistry, R.
    Imperial Coll London, Blackett Lab, London, England..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Schwartz, S. J.
    Imperial Coll London, Blackett Lab, London, England.;Univ Colorado, Dept Astrophys & Planetary Sci, LASP, Boulder, CO 80309 USA..
    Ergun, R. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, LASP, Boulder, CO 80309 USA..
    Drake, J. F.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.;Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA..
    Oieroset, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Stawarz, J. E.
    Imperial Coll London, Blackett Lab, London, England..
    Goldman, M. V.
    Univ Colorado, Dept Phys, Boulder, CO 80309 USA..
    Haggerty, C.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.;Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA..
    Shay, M. A.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Gershman, D. J.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Torbert, R. B.
    Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Guide Field Reconnection: Exhaust Structure and Heating2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 10, p. 4569-4577Article in journal (Refereed)
    Abstract [en]

    Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust similar to 100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.

  • 39. Eastwood, J. P.
    et al.
    Phan, T. D.
    Cassak, P. A.
    Gershman, D. J.
    Haggerty, C.
    Malakit, K.
    Shay, M. A.
    Mistry, R.
    Oieroset, M.
    Russell, C. T.
    Slavin, J. A.
    Argall, M. R.
    Avanov, L. A.
    Burch, J. L.
    Chen, L. J.
    Dorelli, J. C.
    Ergun, R. E.
    Giles, B. L.
    Khotyaintsev, Y.
    Lavraud, B.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Moore, T. E.
    Nakamura, R.
    Paterson, W.
    Pollock, C.
    Strangeway, R. J.
    Torbert, R. B.
    Wang, S.
    Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 10, p. 4716-4724Article in journal (Refereed)
    Abstract [en]

    New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  • 40. Ergun, R. E.
    et al.
    Chen, L. -J
    Wilder, F. D.
    Ahmadi, N.
    Eriksson, S.
    Usanova, M. E.
    Goodrich, K. A.
    Holmes, J. C.
    Sturner, A. P.
    Malaspina, D. M.
    Newman, D. L.
    Torbert, R. B.
    Argall, M. R.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Burch, J. L.
    Webster, J. M.
    Drake, J. F.
    Price, L.
    Cassak, P. A.
    Swisdak, M.
    Shay, M. A.
    Graham, D. B.
    Strangeway, R. J.
    Russell, C. T.
    Giles, B. L.
    Dorelli, J. C.
    Gershman, D.
    Avanov, L.
    Hesse, M.
    Lavraud, B.
    Le Contel, O.
    Retino, A.
    Phan, T. D.
    Goldman, M. V.
    Stawarz, J. E.
    Schwartz, S. J.
    Eastwood, J. P.
    Hwang, K. -J
    Nakamura, R.
    Wang, S.
    Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 7, p. 2978-2986Article in journal (Refereed)
    Abstract [en]

    Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.

  • 41. Ergun, R. E.
    et al.
    Goodrich, K. A.
    Wilder, F. D.
    Ahmadi, N.
    Holmes, J. C.
    Eriksson, S.
    Stawarz, J. E.
    Nakamura, R.
    Genestreti, K. J.
    Hesse, M.
    Burch, J. L.
    Torbert, R. B.
    Phan, T. D.
    Schwartz, S. J.
    Eastwood, J. P.
    Strangeway, R. J.
    Le Contel, O.
    Russell, C. T.
    Argall, M. R.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Chen, L. J.
    Cassak, P. A.
    Giles, B. L.
    Dorelli, J. C.
    Gershman, D.
    Leonard, T. W.
    Lavraud, B.
    Retino, A.
    Matthaeus, W.
    Vaivads, A.
    Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth's Magnetotail2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 8, p. 3338-3347Article in journal (Refereed)
    Abstract [en]

    We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.

  • 42. Ergun, R. E.
    et al.
    Goodrich, K. A.
    Wilder, F. D.
    Holmes, J. C.
    Stawarz, J. E.
    Eriksson, S.
    Sturner, A. P.
    Malaspina, D. M.
    Usanova, M. E.
    Torbert, R. B.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Khotyaintsev, Y.
    Burch, J. L.
    Strangeway, R. J.
    Russell, C. T.
    Pollock, C. J.
    Giles, B. L.
    Hesse, M.
    Chen, L. J.
    Lapenta, G.
    Goldman, M. V.
    Newman, D. L.
    Schwartz, S. J.
    Eastwood, J. P.
    Phan, T. D.
    Mozer, F. S.
    Drake, J.
    Shay, M. A.
    Cassak, P. A.
    Nakamura, R.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 23, article id 235102Article in journal (Refereed)
    Abstract [en]

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  • 43. Ergun, R E
    et al.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Andre, M.
    et al.,
    Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 11, p. 5626-5634Article in journal (Refereed)
    Abstract [en]

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  • 44. Ergun, R. E.
    et al.
    Tucker, S.
    Westfall, J.
    Goodrich, K. A.
    Malaspina, D. M.
    Summers, D.
    Wallace, J.
    Karlsson, M.
    Mack, J.
    Brennan, N.
    Pyke, B.
    Withnell, P.
    Torbert, R.
    Macri, J.
    Rau, D.
    Dors, I.
    Needell, J.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olsson, Göran F.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Cully, C. M.
    The Axial Double Probe and Fields Signal Processing for the MMS Mission2016In: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 199, no 1-4, p. 167-188Article, review/survey (Refereed)
    Abstract [en]

    The Axial Double Probe (ADP) instrument measures the DC to similar to 100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of similar to 1 mV/m, a resolution of similar to 25 mu V/m, and a range of similar to 1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, > 100 dB in dynamic range, better that -80 dB common mode rejection in electric field (E) signal processing, and better that -80 dB cross talk between the E and SCM (B) signals. The A/D conversion is at 16 bits with similar to 1/4 LSB accuracy and similar to 1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are described in this article.

  • 45. Erickson, P. J.
    et al.
    Matsui, H.
    Foster, J. C.
    Torbert, R. B.
    Ergun, R. E.
    Khotyaintsev, Yu. V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Argall, M. R.
    Farrugia, C. J.
    Paulson, K. W.
    Strangeway, R. J.
    Magnes, W.
    Multipoint MMS observations of fine-scale SAPS structure in the inner magnetosphere2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 14, p. 7294-7300Article in journal (Refereed)
    Abstract [en]

    We present detailed observations of dynamic, fine-scale inner magnetosphere-ionosphere coupling at approximate to 3.9R(E) in the Region 2 Birkeland field-aligned current (FAC). We find that observed electrodynamic spatial/temporal scales are primarily characteristic of magnetically mapped ionospheric structure. On 15 September 2015, conjugate Magnetospheric Multiscale (MMS) spacecraft and Millstone Hill radar observations show plasmasphere boundary region subauroral polarization stream (SAPS) electric fields at L = 4.0-4.2 near 21 MLT. MMS observations reveal high-altitude approximate to 1mV/m fine-scale radial and azimuthal electric field perturbations over 0.15L with high spatial coherence over 2-3min and show outward motion within a broader FAC of approximate to 0.12A/m(2). Our analysis shows that MMS electric field fluctuations are most likely reflective of SAPS ionospheric structure at scales of approximate to 22km and with ionospheric closure of small-scale filamentary FAC perturbations. The results highlight the ionosphere's importance in regulating fine-scale magnetosphere-ionosphere structure.

  • 46. Eriksson, A. I.
    et al.
    Andre, M.
    Klecker, B.
    Laakso, H.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Mozer, F.
    Paschmann, G.
    Pedersen, A.
    Quinn, J.
    Torbert, R.
    Torkar, K.
    Vaith, H.
    Electric field measurements on Cluster: comparing the double-probe and electron drift techniques2006In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 24, no 1, p. 275-289Article in journal (Refereed)
  • 47. Eriksson, A. I.
    et al.
    Bostrom, R.
    Gill, R.
    Ahlen, L.
    Jansson, S. E.
    Wahlund, J. E.
    Andre, M.
    Malkki, A.
    Holtet, J. A.
    Lybekk, B.
    Pedersen, A.
    Blomberg, Lars G.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lindqvist, Per-Arne
    KTH, Superseded Departments, Alfvén Laboratory.
    Olsson, G.
    KTH, Superseded Departments, Alfvén Laboratory.
    et al.,
    RPC-LAP: The Rosetta Langmuir probe instrument2007In: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 128, no 04-jan, p. 729-744Article, review/survey (Refereed)
    Abstract [en]

    The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma.

  • 48.
    Eriksson, Elin
    et al.
    Swedish Inst Space Phys, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden..
    Vaivads, Andris
    Swedish Inst Space Phys, Uppsala, Sweden..
    Graham, Daniel B.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Divin, Andrey
    Swedish Inst Space Phys, Uppsala, Sweden.;St Petersburg State Univ, Dept Phys, St Petersburg, Russia..
    Khotyaintsev, Yuri V.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Yordanova, Emiliya
    Swedish Inst Space Phys, Uppsala, Sweden..
    Andre, Mats
    Swedish Inst Space Phys, Uppsala, Sweden..
    Giles, Barbara L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, Craig J.
    Denali Sci LLC, Healy, AK USA..
    Russell, Christopher T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Le Contel, Olivier
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Ecole Polytech,CNRS,Lab Phys Plasmas, Paris, France..
    Torbert, Roy B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Ergun, Robert E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA..
    Electron Energization at a Reconnecting Magnetosheath Current Sheet2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 16, p. 8081-8090Article in journal (Refereed)
    Abstract [en]

    We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (similar to 0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations. Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail, the acceleration mechanism and corresponding heating of electrons is similar. Plain Language Summary Magnetic reconnection is an important physical energy conversion process in astrophysical and laboratory plasmas. The easiest place to analyze magnetic reconnection is in near-Earth space. Due to lack of sufficient electron resolution of previous spacecraft missions, there are many unanswered questions regarding electron heating and acceleration processes at small scales. In particular, the regime where thermal pressure dominates over magnetic pressure, the most common state of plasmas in the Universe, is little explored. In this letter we study such a regime using the four-spacecraft Magnetospheric Multiscale mission. We analyze a reconnecting current sheet in the magnetosheath. We show that electrons are energized by a parallel potential, similar to what has been observed in the different plasma regimes the magnetopause and magnetotail. Thus, despite different plasma conditions, a similar acceleration mechanism and corresponding heating of electrons is occurring in all these regions.

  • 49.
    Eriksson, Elin
    et al.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Graham, Daniel. B.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Yordanova, Emiliya
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Hietala, H.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    André, Mats
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lavraud, B.
    CNRS, IRAP, Toulouse, France..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    JAXA, Chofu, Tokyo, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C.
    Torbert, R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Ergun, R.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 10, p. 9608-9618Article in journal (Refereed)
    Abstract [en]

    Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m(-2), located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is similar to 3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath.

  • 50. Eriksson, S.
    et al.
    Lavraud, B.
    Wilder, F. D.
    Stawarz, J. E.
    Giles, B. L.
    Burch, J. L.
    Baumjohann, W.
    Ergun, R. E.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Magnes, W.
    Pollock, C. J.
    Russell, C. T.
    Saito, Y.
    Strangeway, R. J.
    Torbert, R. B.
    Gershman, D. J.
    Khotyaintsev, Yu. V.
    Dorelli, J. C.
    Schwartz, S. J.
    Avanov, L.
    Grimes, E.
    Vernisse, Y.
    Sturner, A. P.
    Phan, T. D.
    Marklund, Göran T.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Moore, T. E.
    Paterson, W. R.
    Goodrich, K. A.
    Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 11, p. 5606-5615Article in journal (Refereed)
    Abstract [en]

    The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.

12345 1 - 50 of 222
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf