Change search
Refine search result
12 1 - 50 of 61
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cao, Yuan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Zhao, Yongli
    Li, Jun
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Zhang, Jie
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Reinforcement Learning Based Multi-Tenant Secret-Key Assignment for Quantum Key Distribution Networks2019In: 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE, 2019Conference paper (Refereed)
    Abstract [en]

    We propose a reinforcement learning based online multi-tenant secret-key assignment algorithm for quantum key distribution networks, capable of reducing tenant-request blocking probability more than half compared to the benchmark heuristics.

  • 2.
    Cao, Yuan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Zhao, Yongli
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Yu, Xiaosong
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Zhang, Jie
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-tenant secret-key assignment over quantum key distribution networks2019In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 27, no 3, p. 2544-2561Article in journal (Refereed)
    Abstract [en]

    Quantum key distribution (QKD) networks are promising to progress towards widespread practical deployment over existing fiber infrastructures in the near future. Given the high cost and difficulty of deploying QKD networks, multi-tenancy becomes promising to improve cost efficiency for future QKD networks. In a multi-tenant QKD network, multiple QKD tenants can sham the same QKD network infrastructure to obtain secret keys for securing their data transfer. Since the secret-key resources are finite and precious in QKD networks, how to achieve efficient multi-tenant secret-key assignment (MTKA) to satisfy the secret-key demands of multiple QKD tenants over QKD networks becomes a significant problem. In this regard, this study addresses the MTKA problem over QKD networks. A new multi-tenant QKD network architecture is proposed based on software defined networking (SDN) and quantum key pool (QKP) techniques. A secret-key rate sharing scheme is presented and a heuristic algorithm is designed to implement efficient MTKA over QKD networks. A new performance metric, namely matching degree (MD) that reflects the balance between QKD network secret-key resources and QKD tenant requests, is defined and evaluated. Simulation studies indicate that high QKD tenant requests accommodation and efficient secret-key resource usage can be achieved via maximizing the value of MD. 

  • 3.
    Cheng, Yuxin
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    POTORI: A Passive Optical Top-of-Rack Interconnect Architecture for Data Centers2017In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 9, no 5, p. 401-411Article in journal (Refereed)
    Abstract [en]

    Several optical interconnect architectures inside data centers (DCs) have been proposed to efficiently handle the rapidly growing traffic demand. However, not many works have tackled the interconnects at top-of-rack (ToR), which have a large impact on the performance of the data center networks (DCNs) and can introduce serious scalability limitations due to their high cost and power consumption. In this paper, we propose a passive optical ToR interconnect architecture (POTORI) to replace the conventional electronic packet switch (EPS) in the access tier of DCNs. In the data plane, POTORI relies on a passive optical coupler to interconnect the servers within the rack and interfaces toward the aggregation/core tiers. The POTORI control plane is based on a centralized rack controller responsible for managing the communications among the servers in the rack. We propose a cycle-based medium access control (MAC) protocol to efficiently manage the exchange of control messages and the data transmission inside the rack. We also introduce and evaluate a dynamic bandwidth allocation algorithm for POTORI, namely largest first (LF). Extensive simulation results show that, with the use of fast tunable optical transceivers, POTORI and the proposed LF strategy are able to achieve an average packet delay below 10 μs under realistic DC traffic scenarios, outperforming conventional EPSs. On the other hand, with slower tunable optical transceivers, a careful configuration of the network parameters (e.g., maximum cycle time of the MAC protocol) is necessary to obtain a good network performance in terms of the average packet delay.

    Download full text (pdf)
    fulltext
  • 4.
    Cheng, Yuxin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    De Andrade, Marilet
    Ericsson Research, Sweden.
    Wosinska, Lena
    Department of Electrical Engineering, Chalmers University of Technology, Sweden.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Disaggregated Data Centers: Challenges and Tradeoffs2019In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896Article in journal (Other academic)
    Abstract [en]

    Resource utilization of modern data centers is significantly limited by the mismatch between the diversity of the resources required by running applications and the fixed amount of hardwired resources (e.g., number of central processing unit CPU cores, size of memory) in the server blades. In this regard, the concept of function disaggregation is introduced, where the integrated server blades containing all types of resources are replaced by the resource blades including only one specific function. Therefore, disaggregated data centers can offer high flexibility for resource allocation and hence their resource utilization can be largely improved. In addition, introducing function disaggregation simplifies the system upgrade, allowing for a quick adoption of new generation components in data centers. However, the communication between different resources faces severe problems in terms of latency and transmission bandwidth required. In particular,the CPU-memory interconnects in fully disaggregated data centers require ultra-low latency and ultra-high transmission bandwidth in order to prevent performance degradation for running applications. Optical fiber communication is a promising technique to offer high capacity and low latency, but it is still very challenging for the state-of-the-art optical transmission technologies to meet the requirements of the fully disaggregated data centers. In this paper, different levels of function disaggregation are investigated. For the fully disaggregated data centers, two architectural options are presented, where optical interconnects are necessary for CPU-memory communications. We review the state-of-the-art optical transmission technologies and carry out performance assessment when employing them to support function disaggregation in data centers. The results reveal that function disaggregation does improve the efficiency of resource usage in the data centers, although the bandwidth provided by the state-of-the-art optical transmission technologies is not always sufficient for the fully disaggregated data centers. It calls for research in optical transmission to fully utilize the advantages of function disaggregation in data centers.

    Download full text (pdf)
    fulltext
  • 5. Feng, Z.
    et al.
    Li, Borui
    Wang, R.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). Huazhong University of Science and Technology.
    Tang, M.
    Xu, Z.
    Fu, S.
    Tong, W.
    Liu, S.
    Shum, P. P.
    Terabit WSDM optical access network using multicore fibers and advanced modulation formats2015Conference paper (Refereed)
    Abstract [en]

    We proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers (MCFs) with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers and fan-in/fan-out device with 58.7km distance. With QPSK-OFDM modulation format, the aggregation downstream (DS) capacity reaches 250 Gb/s using 5 outer cores and it can be further scaled to 1Tb/s using 16QAM-OFDM. For upstream (US) transmission, wavelengths seeded from DS using the inner core are modulated with DMT signal adapted with the channel conditions and then transmitted back to the OLT through the 6th outer core. As an emulation of high speed mobile backhaul (MB) transmission, IQ modulated PDM-QPSK signal with 48Gb/s per wavelength is transmitted in the inner core of MCF and coherently detected in the OLT side. Both DS and US optical signal exhibit acceptable performance with sufficient power budget.

  • 6. Feng, Z.
    et al.
    Tang, M.
    Guan, X.
    Chan, C. C. -K
    Wu, Q.
    Chen, X.
    Wang, R.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Fu, S.
    Deng, L.
    Liu, D.
    Spectrally overlaid DDO-OFDM transmission enabled by optical power division multiplexing2017In: ICOCN 2016 - 2016 15th International Conference on Optical Communications and Networks, IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    Two 8.3-Gb/s spectrally overlaid DDO-OFDM signals are successfully transmitted along 50-km SMF using optical power division multiplexing and received by a successive interference cancellation (SIC) receiver. Spectral efficiency is doubled with optimized optical modulation index and optical power division ratio.

  • 7. Feng, Z.
    et al.
    Tang, M.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). Tongji University, School of Automotive Studies.
    Wang, R.
    Wu, Q.
    Zhang, L.
    Xu, L.
    Wang, X.
    Zhou, C.
    Wu, J.
    Zhou, S.
    Deng, L.
    Fu, S.
    Liu, D.
    Shum, P. P.
    SNR equalized optical direct-detected OFDM transmission with CAZAC equalization2015In: Conference on Lasers and Electro-Optics Europe - Technical Digest, IEEE conference proceedings, 2015Conference paper (Refereed)
    Abstract [en]

    50Km SSMF optical direct-detected OFDM transmission with Constant Amplitude Zero Auto Correlation Sequence (CAZAC) equalization is experimentally demonstrated with over 15dB power budget. 2.5dB enhancement in sensitivity has been achieved simultaneously with 3dB PAPR suppression.

  • 8. Feng, Z.
    et al.
    Wu, Q.
    Tang, M.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wang, R.
    He, J.
    Fu, S.
    Deng, L.
    Liu, D.
    Shum, P. P.
    Power efficient optical OFDM transmission with phase modulation and direct detection2016In: 2016 21st OptoElectronics and Communications Conference, OECC 2016 - Held Jointly with 2016 International Conference on Photonics in Switching, PS 2016, IEEE conference proceedings, 2016Conference paper (Refereed)
    Abstract [en]

    Optical OFDM transmission with phase modulation and direct detection (PMDD) is verified by theoretical derivation and simulation. 26.12-Gb/s PMDD 16QAM-OFDM achieves comparable performance to single sideband IMDD 16QAM-OFDM with half of the optical modulation index. © 2016 IEICE.

  • 9. Feng, Zhenhua
    et al.
    Li, Borui
    Tang, Ming
    Gan, Lin
    Wang, Ruoxu
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). Huazhong University of Science and Technology (HUST), China.
    Xu, Zhilin
    Fu, Songnian
    Deng, Lei
    Tong, Weijun
    Long, Shengya
    Zhang, Lei
    Zhou, Hongyan
    Zhang, Rui
    Liu, Shuang
    Shum, Perry Ping
    Multicore-Fiber-Enabled WSDM Optical Access Network With Centralized Carrier Delivery and RSOA-Based Adaptive Modulation2015In: IEEE PHOTONICS JOURNAL, ISSN 1943-0655, Vol. 7, no 4, article id 7201309Article in journal (Refereed)
    Abstract [en]

    We proposed and experimentally demonstrated a wavelength-space division multiplexing (WSDM) optical access network architecture with centralized optical carrier delivery utilizing multicore fibers (MCFs) and adaptive modulation based on reflective semiconductor amplifier (RSOA). In our experiment, five of the outer cores are used for undirectional downstream (DS) transmission only, whereas the remaining outer core is utilized as a dedicated channel to transmit upstream (US) signals. Optical carriers for US are delivered from the optical line terminal (OLT) to the optical network unit (ONU) via the inner core and then transmitted back to the OLT after amplification and modulation by the RSOA in the colorless ONU side. The mobile backhaul (MB) service is also supported by the inner core. Wavelengths used in US transmission should be different from that of the MB in order to avoid the Rayleigh backscattering effect in bidirectional transmission. With quadrature phase-shift keying-orthogonal frequency-division multiplexing (QPSK-OFDM) modulation format, the aggregation DS capacity reaches 250 Gb/s using five outer cores and ten wavelengths, and it can be further scaled to 1 Tb/s using 20 wavelengths modulated with 16 QAM-OFDM. For US transmission, 2.5 Gb/s QPSK-OFDM transmission can be achieved just using a low-bandwidth RSOA, and adaptive modulation is applied to the RSOA to further enhance the US data rate to 3.12 Gb/s. As an emulation of high-speed MB transmission, 48 Gb/s inphase and quadrature (IQ) modulated popularization division multiplexing (PDM)-QPSK signal is transmitted in the inner core of MCF and coherently detected in the OLT side. Both DS and US optical signals exhibit acceptable performance with sufficient power budget.

  • 10. Feng, Zhenhua
    et al.
    Tang, Ming
    Fu, Songnian
    Deng, Lei
    Wu, Qiong
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT).
    Wang, Ruoxu
    Shum, Ping
    Liu, Deming
    Performance-Enhanced Direct Detection Optical OFDM Transmission With CAZAC Equalization2015In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 27, no 14, p. 1507-1510Article in journal (Refereed)
    Abstract [en]

    Direct detection optical orthogonal frequency division multiplexing (DDO-OFDM) transmission with constant amplitude zero autocorrelation (CAZAC) sequence equalization is proposed and experimentally demonstrated. Simulation results show that more than 2-dB peak-to-average power ratio (PAPR) reduction can be realized using CAZAC equalization, and 50-km standard single mode fiber (SSMF) transmission of 4.11-Gb/s QPSK-OFDM can be achieved with bit-error rate (BER) under forward error correction limit. Transmission performance of QPSK-based DDO-OFDM system is analyzed in both OB2B configuration and fiber link with and without CAZAC equalization. More than 2.5-dB optical receiver sensitivity improvements can be obtained thanks to the PAPR reduction enjoyed by CAZAC equalization. Signal-to-noise ratio for every subcarrier derived from error vector magnitude is estimated and its flatness is confirmed to be much improved with CAZAC equalization. The performance improvements brought by CAZAC equalization can be extended to other modulation formats, and 8.22-Gb/s 16-quadratic-amplitude modulation-OFDM signals transmission using CAZAC equalization is demonstrated with over 1.5 dB enhancement in receiver sensitivity.

  • 11. Feng, Zhenhua
    et al.
    Tang, Ming
    Guan, Xun
    Chan, Calvin Chun-Kit
    Wu, Qiong
    Wang, Ruoxu
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Fu, Songnian
    Deng, Lei
    Liu, Deming
    Digital Domain Power Division Multiplexing DDO-OFDM Transmission with Successive Interference Cancellation2016In: 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE conference proceedings, 2016Conference paper (Refereed)
    Abstract [en]

    Two independent 2.5-Gb/s DDO-OFDM signals are simultaneously transmitted over 25km SMF using digital domain power division multiplexing and successive interference cancellation. With optimized power division ratio and enhanced SD-FEC, the spectral efficiency can be doubled.

  • 12.
    Jiang, Tao
    et al.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan, Hubei, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS.
    Tang, Ming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan, Hubei, Peoples R China..
    Network Performance Analysis of Spatial Division Multiplexing enabled Packet Switching Networks2018In: 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    We propose a mathematical model based on queue theory to quantify how fferent spatial division multiplexing (SDM) transmission paradigms pact optical packet switching, providing an insightful guideline for sign of SDM networks.

  • 13. Jiang, Tao
    et al.
    Tang, Ming
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Precoded-DC-Biased Optical OFDM system for Visible light communications2017In: 30th Annual Conference of the IEEE Photonics Society (IPC), Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 549-550Conference paper (Refereed)
    Abstract [en]

    Traditional OFDM techniques in VLC suffer from high PAPR and serious clipping distortion. In this paper, we propose a Precoded-DC-Biased Optical OFDM technique for VLC system. Numerical simulations are presented, proving substantial benefits in terms of PAPR and BER.

  • 14.
    Jiang, Tao
    et al.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Feng, Zhenhua
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Chen, Xi
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Deng, Lei
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Li, Xiang
    Wuhan Res Inst Posts & Telecommun, State Key Lab Opt Commun Technol & Networks, Wuhan 430074, Hubei, Peoples R China..
    Liu, Wu
    Wuhan Res Inst Posts & Telecommun, State Key Lab Opt Commun Technol & Networks, Wuhan 430074, Hubei, Peoples R China..
    Liu, Deming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engn Lab Next Generat Internet Access Syst, Wuhan 430074, Hubei, Peoples R China..
    Investigation of DC-Biased Optical OFDM With Precoding Matrix for Visible Light Communications: Theory, Simulations, and Experiments2018In: IEEE Photonics Journal, ISSN 1097-5764, E-ISSN 1943-0655, Vol. 10, no 5, article id 7906916Article in journal (Refereed)
    Abstract [en]

    Orthogonal frequency-division-multiplexing (OFDM) technology is widely used in visible light communication (VLC) to achieve high data rate transmission. However, the traditional direct-current (DC)-biased optical OFDM (DCO-OFDM) VLC systems suffer from the high peak-to-average power ratio (PAPR) which causes signal clipping distortion, and, thus, performance degradation. Furthermore, severe high-frequency fading due to the limited system bandwidth results in poor bit error rate (BER) performance. Precoding matrix (PM) techniques have been proposed to enhance the performance of VLC OFDM transmission, but a little or no work has been carried out in investigating the theory of PM used in OFDM VLC systems. In this paper, we aim to reveal the theory of PM-DCO-OFDM for a VLC system. To figure out the intrinsic laws of a PM method, we investigate the principles of PAPR reduction, clipping distortion optimization, and signal-to-noise ratio (SNR) distribution equalization. Based on the analysis of PAPR, we theoretically proved the simplicity of PM as a method to reduce the possibility of high PAPR by improving the autocorrelation performance of input symbols. The clipping distortion could be improved due to the reduction of high PAPR. Moreover, the relatively uniform SNR distribution can be achieved by PM through equalizing the clipping and channel noise, which is beneficial to improve the BER performance in high-frequency constrained systems. However, the PM method used in a DCO-OFDM VLC system should consider the transmitting power, modulation format, and transmission distance as a whole to achieve the transmission performance improvement. The simulation results demonstrate the complementary cumulative distribution function of PAPR can be reduced similar to 3 dB, while the performance of clipping distortion power and clipping error probability are significantly improved. Furthermore, experiment is carried out with results showing that the PM method can improve the BER performance in the case that VLC OFDM transmission has enough transmitting power, but with the low transmitting power, the PM also can damage the BER performance. The simulation and experiment results are consistent with our theoretical analysis.

  • 15.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    High-capacity short-reach optical communications2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The global traffic is experiencing an exponential growth posing severe challenges to the communication networks in terms of capacity. As a future-proof technology fiber communication is widely implemented in different network segments, which can be categorized by transmission distance as long-haul and short-reach. This thesis focuses on the short-reach communication networks including fiber access network connecting the end users to the metro/core networks that covering tens of kilometers and optical datacenter network handling the traffic within the datacenter with distance up to a few kilometers. For fiber access networks, wavelength division multiplexing passive optical networks (WDM-PONs) assign a dedicated wavelength channel to each user guaranteeing high data rate. Dense channels enlarges the user count but makes the signals vulnerable to the wavelength drift. In this regard we propose two schemes based on optical frequency comb technique to generate stable carriers for WDM-PONs. Meanwhile, radio-over-fiber techniques allows the transmission of radio signals between central offices and the cells. Millimeter wave (MMW) over fiber, on the other hand, offer high bandwidth for future high capacity mobile access. We propose and experimentally demonstrate a palm-shaped spectrum generation where the high-power central carrier can be used for upstream transmission while multiple MMW bands are capable of transmitting different downstream data simultaneously. Regarding optical datacenter networks, passive optical interconnects (POIs) have been proposed as an energy-efficient solution since only passive optical components are used for server interconnection. However, the high insertion loss may result in a scalability problem. We develop a methodology that considers various physical-layer aspects, e.g., receiver types, modulation formats, to quantify the scalability of POIs. Both theoretical analyses and experimental measurements have been performed to assess the scalability of various coupler-based POIs.

    Download full text (pdf)
    fulltext
  • 16.
    Lin, Rui
    KTH.
    Palm-Shaped Optical Spectrum Generation for Fiber-Wireless Integrated Communication with Dual-BandMillimeter Wave Capability2014Conference paper (Refereed)
  • 17.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Cheng, Yuxin
    KTH, School of Information and Communication Technology (ICT).
    Guan, Xun
    Tang, Ming
    Liu, Deming
    Chan, Chun-Kit
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Physical-layer network coding for passive optical interconnect in datacenter networks2017In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 25, no 15, p. 17788-17797Article in journal (Refereed)
    Abstract [en]

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  • 18.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Huazhong University of Science and Technology, China.
    Cheng, Yuxin
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Liu, D.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Physical-layer network coding for passive optical interconnects in datacenter networks2017In: 2017 19th International Conference on Transparent Optical Networks (ICTON), IEEE Computer Society, 2017Conference paper (Refereed)
    Abstract [en]

    We introduce physical-layer network coding for a passive optical interconnect architecture in datacenter networks. Results reveal that half of the wavelengths can be saved to obtain latency in the magnitude of microseconds.

  • 19.
    Lin, Rui
    et al.
    Huazhong University of SciandTech (HUST), China.
    Feng, Z.
    Tang, M.
    Fu, S.
    Shum, P.P.
    Liu, D.
    Spacing Switchable Flat Broadband Optical Comb Generation Based on Cascaded Electro-optical Modulator2013Conference paper (Refereed)
  • 20.
    Lin, Rui
    et al.
    Huazhong University of Sci&Tech ( HUST), China.
    Feng, Z.
    Tang, M.
    Wang, R.
    Fu, S.
    Shum, P.
    Liu, D.
    Palm-Shaped Optical Spectrum Generation for Fiber-Wireless Integrated Communication with Dual-Band Millimeter Wave2014In: Asia Communications and Photonics Conference, ACPC 2014, Optical Society of America, 2014Conference paper (Refereed)
    Abstract [en]

    We proposed and demonstrated a simple cost-effective palm shaped spectrum generation based on DPMZM in order to simultaneously generating dual-band MMWs and optical carrier, offering an alternative in integration of fiber and wireless communication in indoor and inter-building environments.

  • 21.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. Huazhong University of SciandTech (HUST), China.
    Feng, Z.
    Tang, M.
    Wang, R.
    Fu, S.
    Shum, P.
    Liu, D.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. South China Normal University, China.
    Palm-shaped spectrum generation for dual-band millimeter wave and baseband signals over fiber2016In: Optics Communications, ISSN 0030-4018, E-ISSN 1873-0310, Vol. 367, p. 137-143Article in journal (Refereed)
    Abstract [en]

    In order to offer abundant available bandwidth for radio access networks satisfying future 5G requirements on capacity, this paper proposes a simple and cost-effective palm-shaped spectrum generation scheme that can be used for high capacity radio over fiber (RoF) system. The proposed scheme can simultaneously generate an optical carrier used for upstream and two bands of millimeter wave (MMW) that are capable of carrying different downstream data. The experiment results show that the proposed palm-shaped spectrum generation scheme outperforms optical frequency comb (OFC) based multi-band MMW generation in terms of upstream transmission performance. Furthermore, simulation is carried out with different dual-band MMW configurations to verify the feasibility of using the proposed spectrum generation scheme in the RoF system.

  • 22.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Hubei, Peoples R China..
    Udalcovs, A.
    Res Inst Sweden AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Pang, X.
    Res Inst Sweden AB, Networking & Transmiss Lab, Kista, Sweden..
    Shen, L.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Hubei, Peoples R China..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Tang, M.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Hubei, Peoples R China..
    Fu, S.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Hubei, Peoples R China..
    Tong, W.
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, R&D Ctr, Wuhan, Hubei, Peoples R China..
    Liu, D.
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Hubei, Peoples R China..
    Ferreira da Silva, T.
    Natl Inst Metrol Qual & Technol, Opt Metrol Div, BR-25250020 Duque De Caxias, RJ, Brazil..
    Xavier, G. B.
    Linkopings Univ, Inst Syst Tekn, S-58183 Linkoping, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spontaneous Raman Scattering Effects in Multicore Fibers: Impact on Coexistence of Quantum and Classical Channels2019In: 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2019Conference paper (Refereed)
    Abstract [en]

    We measure spontaneous Raman scattering (SRS) effects in C-band and observe trench-assisted MCF is robust to SRS noise, making it possible to run quantum channels in the neighboring and/or the same core as data channels.

  • 23.
    Lin, Rui
    et al.
    KTH.
    Kerrebrouck, J. V.
    Pang, Xiaodan
    KTH.
    Verplaetse, M.
    Ozolins, O.
    Udalcovs, A.
    Zhang, Lu
    KTH.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH.
    Westergren, Urban
    KTH.
    Popov, Sergei
    KTH.
    Liu, D.
    Tong, W.
    Keulenaer, T. D. E.
    Torfs, G.
    Bauwelinck, J.
    Yin, X.
    Chen, Jiajia
    KTH.
    Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 8, p. 10519-10526Article in journal (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/λ/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 × 100 Gbps/λ/core transmission of both non-return-to-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects.

  • 24.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lu, Yang
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Tang, Ming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Liu, Deming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    First Experimental Demonstration of Physical-Layer Network Coding in PAM4 System for Passive Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We propose to implement physical-layer network coding (PLNC) in coupler-based passive optical interconnects. The PLNC over PAM4 system is for the first time experimentally validated, where simultaneous mutual communications can be kept within the same wavelength channel, doubling spectrum efficiency.

  • 25.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Pang, X.
    Ozolins, O.
    Feng, Z.
    Djupsjobacka, A.
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Fotonik och mikrovågsteknik, FMI.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, G.
    Tang, M.
    Fu, S.
    Liu, D.
    Popov, Sergei Yu
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Performance evaluation of PAM and DMT for short-range optical transmission with high speed InGaAsP DFB-TWEAM2016In: 2016 Optical Fiber Communications Conference and Exhibition, OFC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016Conference paper (Refereed)
    Abstract [en]

    We report on experimental results of 56-Gb/s OOK, PAM4 and 25-Gb/s DMT transmission with a high speed InGaAsP based monolithically integrated DFB-TWEAM, and evaluate different digital equalization implementations.

  • 26.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. Huazhong University of Science and Technology, China.
    Pang, Xiaodan
    Ozolins, Oskars
    Feng, Zhenhua
    Djupsjöbacka, Anders
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Fotonik och mikrovågsteknik, FMI.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Fotonik och mikrovågsteknik, FMI.
    Jacobsen, Gunnar
    Tang, Ming
    Fu, Songnian
    Liu, Deming
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization2016Conference paper (Refereed)
  • 27.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Verplaetse, M.
    Belgium.
    Ozolins, O.
    Udalcovs, A.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    De Keulenaer, T.
    Belgium.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over 10 km multicore fiber2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time IM/DD spatial division multiplexing system is experimentally demonstrated for short-reach communications. 100 Gbps/λ/core NRZ and EDB transmission is achieved below 7%-overhead HD-FEC limit after 10km 7-core fiber with optical dispersion compensation.

  • 28.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Szczerba, K.
    Agrell, E.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    To overcome the scalability limitation of passive optical interconnects in datacentres2016In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2016Conference paper (Refereed)
    Abstract [en]

    We propose to add optical amplifier(s) to passive optical interconnect (POI) at top-of-rack in datacentres and validate this approach by introducing impairment constraints into POIs design. It is shown that one amplifier can improve scalability by a factor of 16.

    Download full text (pdf)
    fulltext
  • 29.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Huazhong University of Sci&Tech (HUST), China.
    Szczerba, K.
    Agrell, E.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Liu, D.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Scalability analysis methodology for passive optical interconnects in data center networks using PAM2017In: Optics Communications, ISSN 0030-4018, E-ISSN 1873-0310, Vol. 403, p. 283-289Article in journal (Refereed)
    Abstract [en]

    A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

  • 30.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. Huazhong University of Sci&Tech (HUST), China.
    Szczerba, Kraysztof
    Agrell, Erik
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, Ming
    Liu, Deming
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Scalability Analysis of Coupler Based Optical InterconnectsIn: IEEE Photonics Journal, ISSN 1097-5764, E-ISSN 1943-0655Article in journal (Other academic)
  • 31.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. Huazhong University of Science and Technology, China.
    Szczerba, Krzysztof
    Agrell, Erik
    Wosinska, Lena
    Tang, Ming
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    To Overcome the Scalability Limitation of Passive Optical Interconnects in Data centres2016Manuscript (preprint) (Other academic)
  • 32.
    Lin, Rui
    et al.
    Huazhong University of Science and Technology, China.
    Tang, M.
    Wang, R.
    Feng, Z.
    Fu, S.
    Liu, D.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Shum, P.
    An Ultra-dense Optical Comb Based DWDM-OFDM-PON System2014Conference paper (Refereed)
    Abstract [en]

    We proposed and demonstrated an ultra-dense optical comb based DWDM-OFDM-PON scheme. At the optical line terminal (OLT), a cost-effective optical frequency comb generator (OFCG) is proposed and achieved as the multi-wavelength optical source. The OFCG is capable to provide multiple channels with reconfigurable wavelength spacing for ultra-dense WDM-PON based access network. In our scheme, OFDMsignal with multi-level modulation will be encoded into the OFCG lines for the downstream transmission to enhance the spectral efficiency while the OFDM signal will be remodulated by OOK data for the upstream transmission due to its ease of implementation in optical network unit (ONU) side. In experiments, we demonstrated that 10 optical lines with 25 GHz channel spacing are generated and they were modulated by 2.5-GB/s QPSK-OFDM for the downlink signal transmission. We also demonstrated that the multiple wavelengths from the OFCG.

  • 33.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Ozolins, O.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    Shen, L.
    Tang, M.
    Fu, S.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Yang, C.
    Tong, W.
    Liu, D.
    Da Silva, T. F.
    Xavier, G. B.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Telecom Compatibility Validation of Quantum Key Distribution Co-Existing with 112 Gbps/λ/core Data Transmission in Non-Trench and Trench-Assistant Multicore Fibers2018In: European Conference on Optical Communication, ECOC, Institute of Electrical and Electronics Engineers Inc. , 2018Conference paper (Refereed)
    Abstract [en]

    We experimentally characterize photon leakage from 112Gb/s data channels in both non-trench and trench-assistant 7-core fibers, demonstrating telecom compatibility for QKD co-existing with high-speed data transmission when a proper core/wavelength allocation is carried out.

  • 34.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Shen, Li
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Yang, Chen
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, Wuhan, Hubei, Peoples R China..
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    da Silva, Thiago Ferreira
    Natl Inst Metrol Qual & Technol, Opt Metrol Div, Duque De Caxias, Brazil..
    Xavier, Guilherme. B.
    Linkopings Univ, Inst Syst Tekn, Linkoping, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Integrating Quantum Key Distribution with the Spatial Division Multiplexing Enabled High Capacity Optical Networks2018In: 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    In this talk, we discuss integrating the quantum key distribution (QKD) th the spatial division multiplexing (SDM) enabled optical mmunication network for the cyber security.

  • 35.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Van Kerrebrouck, Joris
    Univ Ghent, Imec, IDLab, Dept Informat Technol, Ghent, Belgium..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Verplaetse, Michiel
    Univ Ghent, Imec, IDLab, Dept Informat Technol, Ghent, Belgium..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, Wuhan, Hubei, Peoples R China..
    De Keulenaer, Timothy
    Univ Ghent, Imec, Spin Off IDLab, BiFAST, Ghent, Belgium..
    Torfs, Guy
    Univ Ghent, Imec, IDLab, Dept Informat Technol, Ghent, Belgium..
    Bauwelinck, Johan
    Univ Ghent, Imec, IDLab, Dept Informat Technol, Ghent, Belgium..
    Yin, Xin
    Univ Ghent, Imec, IDLab, Dept Informat Technol, Ghent, Belgium..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spatial Division Multiplexing for Optical Data Center Networks2018In: 22ND INTERNATIONAL CONFERENCE ON OPTICAL NETWORK DESIGN AND MODELING (ONDM 2018) / [ed] Ruffini, M Tzanakaki, A Casellas, R Autenrieth, A MarquezBarja, JM, IEEE , 2018, p. 239-241Conference paper (Refereed)
    Abstract [en]

    Emerging mobile and cloud applications drive everincreasing capacity demands, particularly for short-reach optical communications, where low-cost and low-power solutions are highly required. Spatial division multiplexing (SDM) techniques provide a promising way to scale up the lane count per fiber, while reducing the number of fiber connections and patch cords, and hence simplifying cabling complexity. This talk will address challenges on both system and network levels, and report our recent development on SDM techniques for optical data center networks.

  • 36.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Scalability Analysis Methodology for Passive OpticalInterconnects in Data Center Networks Using PAM2016In: IEEE Photonics Journal, ISSN 1097-5764, E-ISSN 1943-0655Article in journal (Other academic)
  • 37.
    Lu, Yang
    et al.
    KTH.
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    KTH.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    An arbitrary multiple-wavelength reception scheme using only a few fixed-wavelength filters is proposed for optical interconnects. Filter matrices design based on error-control coding theory is devised. The feasibility of the proposed scheme is demonstrated in a four-wavelength reception experiment.

  • 38.
    Lu, Yang
    et al.
    Hangzhou Dianzi Univ, Coll Commun Engn, Hangzhou, Zhejiang, Peoples R China..
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou 510006, Guangdong, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-channel collision-free reception for optical interconnects2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13214-13222Article in journal (Refereed)
    Abstract [en]

    A multi channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.

  • 39. Ozolins, O.
    et al.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Gan, L.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Liu, D.
    Tong, W.
    Torfs, G.
    Bauwelinck, J.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Yin, X.
    7×149 Gbit/s PAM4 transmission over 1 km multicore fiber for short-reach optical interconnects2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We transmit 80 Gbaud/λ/core PAM4 signal enabled by 1.55 μm EML over 1 km 7-core fiber. The solution achieves single-wavelength and single-fiber 1.04 Tbit/s post-FEC transmission enhancing bandwidth-density for short-reach optical interconnects.

  • 40. Ozolins, O.
    et al.
    Udalcovs, A.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Djupsjöbacka, A.
    Mårtensson, J.
    Fröjdh, K.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    Tong, W.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    112 Gbps/λ PAM4 inter-DCI with continuous-fiber Bragg grating based dispersion compensators2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We demonstrate 56 Gbaud/λ PAM4 inter - data center interconnects over 81 km single core single mode fiber and 33.6 km 7-core single mode fiber with continuous-fiber Bragg grating based chromatic dispersion compensators covering C-band.

  • 41.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    RISE Acreo AB, NETLAB Networking & Transmiss Lab, , Sweden..
    Navarro, Julien R. G.
    Udalcovs, A.
    RISE Acreo AB, NETLAB Networking & Transmiss Lab, Isafjordsgatan 22, S-16440 Kista, Sweden..
    Kakkar, Aditya
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics. KTH Royal Inst Technol, Isafjordsgatan 22, S-16440 Kista, Sweden..
    Tang, M.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, S.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Liu, D.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Jacobsen, G.
    RISE Acreo AB, NETLAB Networking & Transmiss Lab, Isafjordsgatan 22, S-16440 Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Low-Complexity Digital Signal Processing Techniques to Enable Coherent Optical Systems for Metro and Access networks2018In: 23RD OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2018), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    We summarize our recent research works on enabling coherent optical transmission systems for metro and access networks with low-complexity digital signal processing techniques, focusing on reduction of laser linewidth requirement with efficient carrier phase recovery.

    Download full text (pdf)
    fulltext
  • 42.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Res Inst Sweden, NETLAB, Kista, Sweden..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Xiao, Shilin
    Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China..
    Hu, Weisheng
    Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China..
    Jacobsen, Gunnar
    RISE Res Inst Sweden, NETLAB, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Beyond 200 Gbps per Lane Intensity Modulation Direct Detection (IM/DD) Transmissions for Optical Interconnects: Challenges and Recent Developments2019In: 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2019Conference paper (Refereed)
    Abstract [en]

    All parts of an IM/DD system are being stretched to the limit as the single lane data rate approaches 200 Gbps and beyond. We report the recent developments on the key enablers conquering this target.

  • 43.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Ozolins, O.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spiga, S.
    Germany.
    Amann, M. C.
    Germany.
    Van Steenberge, G.
    Belgium.
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    7×100 Gbps PAM-4 transmission over 1-km and 10-km single mode 7-core fiber using 1.5-μm SM-VCSEL2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    100 Gbps/λ/core PAM-4 transmission is successfully demonstrated over 1-km and 10- km single mode 7-core fiber links, enabled by directly modulated 1.5-μm single mode VCSEL of 23 GHz modulation bandwidth with pre- and post- digital equalizations.

  • 44.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Ozolins, O.
    Sweden.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Sweden.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spiga, S.
    Germany.
    Amann, M. C.
    Germany.
    Van Steenberge, G.
    Belgium.
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Sweden.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    High-speed SDM interconnects with directly-modulated 1.5-μm VCSEL enabled by low-complexity signal processing techniques2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We report on our recent work in supporting up to 100 Gbps/λ/core transmissions with a directly modulated 1.5-μm single mode VCSEL and multicore fiber, enabled by low-compleixty pre- and post- digital equalizations.

  • 45.
    Pang, Xiaodan
    et al.
    KTH. RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Van Kerrebrouck, Joris
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Lin, Rui
    KTH. Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH.
    Spiga, Silvia
    Tech Univ Munich, Walter Schottky Inst, Garching, Germany..
    Amann, Markus C.
    Tech Univ Munich, Walter Schottky Inst, Garching, Germany..
    Van Steenberge, Geert
    Univ Ghent, Imec, CMST, Ghent, Belgium..
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH.
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co, Wuhan, Hubei, Peoples R China..
    Torfs, Guy
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Bauwelinck, Johan
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Yin, Xin
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Chen, Jiajia
    KTH.
    7x100 Gbps PAM-4 Transmission over 1-km and 10-km Single Mode 7-core Fiber using 1.5-mu m SM-VCSEL2018In: 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    100 Gbps/lambda/core PAM-4 transmission is successfully demonstrated over 1-km and 10km single mode 7-core fiber links, enabled by directly modulated 1.5-mu m single mode VCSEL of 23 GHz modulation bandwidth with pre-and post-digital equalizations.

  • 46.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Infinera, Fredsborgsgatan 24, Stockholm, SE-117 43, Sweden.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Udalcovs, A.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Schats, Richard
    KTH.
    Xiao, S.
    Hu, W.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Key technologies to enable terabit-scale digital radio-over-fiber systems2019In: Broadband Access Communication Technologies XIII, SPIE - International Society for Optical Engineering, 2019, Vol. 10945, article id 109450EConference paper (Refereed)
    Abstract [en]

    With the approach of the 5G era, stringent requirements are imposed on the data transport solutions, including both of the supported transmission reach and the capacity. Radio-over-fiber technologies are considered to be promising candidates to cope with both aspects, owing to the low-loss and broad-bandwidth nature of the optical fibers. Meanwhile with such optical transport solutions, signals can be collected from the distributed remote radio sites and processed in a centralized manner. In this report, we target on the digital radio-over-fiber systems, and discuss about several key technologies, focusing on the aspects of coding and transmission, which could potentially enable terabit-scale data transport.

  • 47. Udalcovs, A.
    et al.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Gan, L.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Pang, X.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Djupsjöbacka, A.
    Tang, M.
    Fu, S.
    Liu, D.
    Tong, W.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Inter-Core Crosstalk in Multicore Fibers: Impact on 56-Gbaud/λ/Core PAM-4 Transmission2018In: European Conference on Optical Communication, ECOC, Institute of Electrical and Electronics Engineers Inc. , 2018Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate the impact of inter-core crosstalk in multicore fibers on 56-Gbaud PAM-4 signal quality after 2.5-km transmission over a weakly-coupled and uncoupled seven-core fibers, revealing the crosstalk dependence on carrier central wavelength in range of 1540-1560 nm.

  • 48.
    Udalcovs, A.
    et al.
    Sweden.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Sweden.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Djupsjöbacka, A.
    Sweden.
    Mårtensson, J.
    Sweden.
    Tang, M.
    China.
    Fu, S.
    China.
    Liu, D.
    China.
    Tong, W.
    China.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Sweden.
    MCF-enabled self-homodyne 16/64QAM transmission for SDM optical access networks2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a 28-Gbaud circular and square 16/64QAM transmission over a 33.6-km long seven-core fiber with the LO passed through one of the cores for self-homodyne coherent detection employing a low-complexity digital signal processing.

  • 49.
    Van Kerrebrouck, J.
    et al.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Zhang, Lijia
    KTH. Shanghai Jiao Tong Univ, SE IEE, Shanghai, Peoples R China..
    Lin, Rui
    KTH.
    Pang, Xiaodan
    KTH. RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, A.
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, O.
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Spiga, S.
    Walter Schottky Inst, Coulombwall 4, Garching, Germany..
    Amann, M. C.
    Walter Schottky Inst, Coulombwall 4, Garching, Germany..
    Van Steenberge, G.
    Univ Ghent, Imec, INTEC, CMST, Ghent, Belgium..
    Gan, L.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, M.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, S.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH.
    Popov, Sergei
    KTH.
    Liu, D.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, W.
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co, Wuhan, Hubei, Peoples R China..
    Xiao, S.
    Shanghai Jiao Tong Univ, SE IEE, Shanghai, Peoples R China..
    Torfs, G.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Chen, Jiajia
    KTH.
    Bauwelinck, J.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Yin, X.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    726.7-Gb/s 1.5-mu m Single-Mode VCSEL Discrete Multi-Tone Transmission over 2.5-km Multicore Fiber2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    A 107Gb/s net-rate DMT optical signal was generated using a single-mode long-wavelength VCSEL with a modulation bandwidth of 23GHz. We experimentally demonstrated a total net-rate up to 726.7Gb/s at 1.5 mu m over 2.5km 7-core dispersion-uncompensated MCF.

  • 50. Van Kerrebrouck, J.
    et al.
    Zhang, Lu
    KTH, School of Information and Communication Technology (ICT). Shanghai Jiao Tong University, Shanghai, China.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). uazhong University of Science and Technology, Wuhan, China.
    Pang, Xiaodan
    Networking and Transmission Laboratory, RISE Acreo AB, Kista, Sweden.
    Udalcovs, A.
    Ozolins, O.
    Spiga, S.
    Amann, M. C.
    Van Steenberge, G.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT).
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Liu, D.
    Tong, W.
    Xiao, S.
    Torfs, G.
    Chen, Jia
    KTH, School of Information and Communication Technology (ICT).
    Bauwelinck, J.
    Yin, X.
    726.7-Gb/s 1.5-μm single-mode VCSEL discrete multi-tone transmission over 2.5-km multicore fiber2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    A 107Gb/s net-rate DMT optical signal was generated using a single-mode longwavelength VCSEL with a modulation bandwidth of 23GHz. We experimentally demonstrated a total net-rate up to 726.7Gb/s at 1.5μm over 2.5km 7-core dispersion-uncompensated MCF.

12 1 - 50 of 61
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf