Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Johnson, Kyle D.
    et al.
    KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.
    Raftery, Alicia M.
    KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.
    Lopes, Denise Adorno
    KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.
    Wallenius, Janne
    KTH, School of Engineering Sciences (SCI), Physics, Reactor Physics.
    Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications2016In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 477, p. 18-23Article in journal (Refereed)
    Abstract [en]

    In this study, U3Si2 was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system - namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase - as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U3Si2 composite, with desirable microstructural characteristics for accident tolerant fuel applications.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf