Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Behi, Mohammadreza
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia..
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia..
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Hamidreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment2018In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 164, p. 449-464Article in journal (Refereed)
    Abstract [en]

    Recently the interest in solar thermal cooling has been growing for Air Conditioning (AC) applications. This paper presents an applied experimental and numerical evaluation of a novel triple-state sorption solar cooling module. The performance of a LiCl-H2O based sorption module (SM) for cooling/heating system with integration of an external energy storage has been evaluated. The dynamic behavior of the SM, which can be driven by solar energy, is presented. Two PCM assisted configurations of the SM have been studied herein; (i) PCM assisted sorption module for cooling applications (ii) PCM assisted sorption module for heating applications. Initially, an experimental investigation was carried out to evaluate the charging/discharging process of the SM without external energy storage. Secondly, the initial experimental configuration was modeled with a PCM integrated storage compartment. The PCM storage compartment was connected to the Condenser/Evaporator (C/E) of the SM. The temporal history of the sorption module's C/E and PCM storage, the cyclic and average performance in terms of cooling/heating capacity, cooling/heating COP, and the total efficiency were experimentally and numerically investigated. Furthermore, PCM charging/discharging power rate and solidification/melting process of the PCM in the integrated storage compartment to the SM were predicted by the model.

  • 2.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, H.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Shelf stability of nanofluids and its effect on thermal conductivity and viscosity2013In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 24, no 10, p. 105301-Article in journal (Refereed)
    Abstract [en]

    This study proposes a method and apparatus to estimate shelf stability of nanofluids. Nanofluids are fabricated by dispersion of solid nanoparticles in base fluids, and shelf stability is a key issue for many practical applications of these fluids. In this study, shelf stability is evaluated by measuring the weight of settled solid particles on a suspended tray in a colloid versus time and correlated with the performance change of some nanofluid systems. The effects of solid particle concentration and bath sonication time were investigated for selected nanofluids. The results show the applicability of this simple method and the apparatus to evaluate nanofluid shelf stability. Furthermore, it shows that Stokes' law is not valid for determining the settling time of the tested nanoparticles probably due to their complicated shape and presence of surface modifiers. The effect of shelf stability on thermal conductivity and viscosity was illustrated for some nanofluids. Experimental results show that water-based Al2O3 nanofluids have quite good shelf stability and can be good candidates for industrial applications.

  • 3.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Anwar, Zahid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lumbreras, Itziar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed A.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, Heiko
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Cooling performance of nanofluids in a small diameter tube2013In: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 49, p. 114-122Article in journal (Refereed)
    Abstract [en]

    This article reports convective single-phase heat transfer performance in laminar flow for some selected nanofluids (NFs) in an open small diameter test section. A 0.50 mm inner diameter, 30 cm long stainless steel test section was used for screening single phase laminar convective heat transfer with water and five different water based NFs. Tested NFs were; Al2O3 (two types), TiO2 (two types) and CeO2 (one type), all 9 wt.% particle concentration. The effective thermal conductivity of the NFs were measured with Transient Plane Source (TPS) method and viscosity were measured with a rotating coaxial cylindrical viscometer. The obtained experimental results for thermal conductivity were in good agreement with the predicted values from Maxwell equation. The local Shah correlation, which is conventionally used for predicting convective heat transfer in laminar flow in Newtonian fluids with constant heat flux boundary condition, was shown to be valid for NFs. Moreover, the Darcy correlation was used to predict the friction factor for the NFs as well as for water. Enhancement in heat transfer for NFs was observed, when compared at equal Reynolds number, as a result of higher velocity or mass flow rate of the NFs at any given Reynolds number due to higher viscosity for NFs. However, when compared at equal pumping power no or only minor enhancement was observed.

  • 4.
    Haghighi, Ehsan Bitaraf
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Anwar, Zahid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Lumbreras, Itziar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Screening Single Phase Laminar Convective Heat Transfer of Nanofluids in a Micro-tube2012In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 395, article id 012036Article in journal (Refereed)
    Abstract [en]

    Nano scale solid particles dispersed in base fluids are a new class of engineered colloidal solutions called nanofluids. Several studies reported enhancement of heat transfer by using nanofluids. This article reports convective single-phase heat transfer coefficients in an open 30 cm long, 0.50 mm internal diameter stainless steel test section. The setup is used for screening single phase laminar convective heat transfer with water and three different nanofluids: water based Al2O3, ZrO2, and TiO2 (all with 9 wt% of particles). A syringe pump with adjustable pumping speed is used to inject fluids into the test section. Thirteen T-type thermocouples are attached on the outer surface of the test section to record the local wall temperatures. Furthermore, two T-type thermocouples are used to measure inlet and outlet fluid temperatures. A DC power supply is used to heat up the test section and a differential pressure transducer is used to measure the pressure drop across the tube. Furthermore, the effective thermal conductivities of these nanofluids are measured using the Transient Plane Source (TPS) method at a temperature range of 20 - 50 degrees C. The experimental average values of heat transfer coefficients for nanofluids are compared with water. Enhancement in heat transfer of nanofluids is observed only when compared at constant Reynolds number (Due to higher viscosity for nanofluids, higher velocity or mass flow rate is required for nanofluids to reach the same Reynolds number). The other methods of comparison: equal mass flow rate, volume flow rate, pressure drop and pumping power did not show any augmentation of the heat transfer coefficient for the tested nanofluids compared to water.

  • 5.
    Mirmohammadi, Seyed Aliakbar
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Cooling performance study of a novel heat exchanger in an absorption system2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 180, p. 1001-1012Article in journal (Refereed)
    Abstract [en]

    The paper is focusing on a shell and plate heat exchanger of a novel absorption refrigeration system. The system is composed of two vacuum vessels connected together with a steam channel and one heat exchanger is located in each vessel. The first heat exchanger is called reactor where working fluid and salt exist and the second heat exchanger or evaporator/condenser (C/E) is where only water exists. The propylene glycol-based (PG) heat transfer fluid is used on the shell side of both heat exchangers as the media to exchange the heat between boilers and reactor in one vessel and between cold environment and condenser/evaporator in another vessel. An experimental test rig was built to investigate the performance of the evaporator/condenser heat exchanger. Then, a three-dimensional (3D) Computational Fluid Dynamics (CFD) model was developed. The experimental result was then used to validate the numerical model developed by using Ansys/Fluent software. A parametric study has been intended to find a more appropriate design for the heat exchanger in order to increase heat transfer performance. Results of the parametric study demonstrated that the cooling performance is doubled by increasing the diameter of the plate from 0.14 m to 0.2 m. In addition, to obtain the maximum heat transfer performance, Reynolds number and distance between plates should be 9 and 0.5 m, respectively. Two correlations have been developed for the outlet temperature and cooling power of the heat exchanger which are functions of heat transfer coefficient. The results of this study can be of vital importance for improving the cooling power of the system, remarkably.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf