Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Butchosa, Núria
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanopaper membranes from chitin-protein composite nanofibers: Structure and mechanical properties2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 7, p. 40121-Article in journal (Refereed)
    Abstract [en]

    Chitin nanofibers may be of interest as a component for nanocomposites. Composite nanofibers are therefore isolated from crab shells in order to characterize structure and analyze property potential. The mechanical properties of the porous nanopaper structures are much superior to regenerated chitin membranes. The nanofiber filtration-processing route is much more environmentally friendly than for regenerated chitin. Minerals and extractives are removed using HCl and ethanol, respectively, followed by mild NaOH treatment and mechanical homogenization to maintain chitin-protein structure in the nanofibers produced. Atomic force microscope (AFM) and scanning transmission electron microscope (STEM) reveal the structure of chitin-protein composite nanofibers. The presence of protein is confirmed by colorimetric method. Porous nanopaper membranes are prepared by simple filtration in such a way that different nanofiber volume fractions are obtained: 43%, 52%, 68%, and 78%. Moisture sorption isotherms, structural properties, and mechanical properties of membranes are measured and analyzed. The current material is environmentally friendly, the techniques employed for both individualization and membrane preparation are simple and green, and the results are of interest for development of nanomaterials and biocomposites.

  • 2.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Joby Kochumalayil, Jose
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Cervin, Nicholas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanostructured hydrogel based on small diameter native chitin nanofibers: Preparation, structure and propertiesManuscript (preprint) (Other academic)
  • 3.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Nurani, Ghasem
    KTH, School of Biotechnology (BIO), Glycoscience.
    Utsel, Simon
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Brumer, Harry
    KTH, School of Biotechnology (BIO), Glycoscience.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Soft, bio-inspired chitin/protein nanocomposites: mechanical behavior and interface interactions between recombinant resilin-like proteins and chitin nanofibersManuscript (preprint) (Other academic)
  • 4.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Utsel, Simon
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan2015In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 18, no 2, article id 99Article in journal (Refereed)
    Abstract [en]

    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The nanostructured biocomposite was produced in volume fractions of 0, 8, 22 and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed.

  • 5.
    Ezekiel, Ngesa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ndazi, Bwire
    Nyahumwa, Christian
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Effect of temperature and durations of heating on coir fibers2011In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 33, no 3, p. 638-643Article in journal (Refereed)
    Abstract [en]

    Biocomposites derived from polymeric resin and lignocellulosic fibers may be processed at temperatures ranging from 100 degrees C to 230 degrees C for durations of up to 30 min. These processing parameters normally lead to the degradation of the fiber's mechanical properties such as Young's modulus (E), ultimate tensile strength (UTS) and percentage elongation at break (%EB). In this study, the effect of processing temperature and duration of heating on the mechanical properties of coir fibers were examined by heating the fibers in an oven at 150 degrees C and 200 degrees C for 10,20 and 30 min to simulate processing conditions. Degradation of mechanical properties was evaluated based on the tensile properties. It was observed that the UTS and %EB of heat treated fibers decreased by 1.17-44.00% and 15.28-81.93%, respectively, compared to untreated fibers. However, the stiffness or E of the fibers increased by 6.3-25.0%. Infra red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to elucidate further the influence of chemical, thermal and microstructural degradation on the resulting tensile properties of the fibers. The main chemical changes observed at 2922, 2851, 1733, 1651, 1460, 1421 and 1370 cm(-1) absorption bands were attributed to oxidation, dehydration and depolymerization as well as volatization of the fiber components. These phenomena were also attributed to in the TGA, and in addition the TGA showed increased thermal stability of the heat treated coir fibers with reference to the untreated counterparts which was most probably due to increased recrystallization and cross linking. The microstructural features including microcracks, micropores, collapsed microfibrils and sort of cooled molten liquid observed on the surface of heat treated coir fibers from the scanning electron microscope (SEM) could not directly be linked to the effect of temperature and durations of heating although such features may have largely account for the lower tensile properties of heat treated coir fibers with reference to untreated ones.

  • 6. Josefsson, G.
    et al.
    Ahvenainen, P.
    Mushi, Ngesa Ezekiel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Gamstedt, E. K.
    Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels2015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 21, article id 214311Article in journal (Refereed)
    Abstract [en]

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  • 7. Liimatainen, Henrikki
    et al.
    Ezekiel, Ngesa
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Sliz, Rafal
    Ohenoja, Katja
    Sirviö, Juho Antti
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hormi, Osmo
    Niinimäki, Jouko
    High-Strength Nanocellulose-Talc Hybrid Barrier Films2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 24, p. 13412-13418Article in journal (Refereed)
    Abstract [en]

    Hybrid organic inorganic films mimicking natural nacre-like composite structures were fabricated from cellulose nanofibers obtained from sequential periodate chlorite oxidation treatment and talc platelets, using a simple vacuum-filtration method. As a pretreatment, commercial talc aggregates were individualized into well-dispersed talc platelets using a wet stirred media mill with high-shear conditions to promote the homogeneity and mechanical characteristics of hybrids. The nanofiber talc hybrids, which had talc contents from 1 to 50 wt %, were all flexible in bending, and possessed tensile strength and Young's modulus values up to 211 +/- 3 MPa and 12 +/- 1 GPa, respectively, the values being remarkably higher than those reported previously for nanofibrillated cellulose talc films. Because of the lamellar and well-organized structure of hybrids in which the talc platelets were evenly embedded, they possessed a small pore size and good oxygen barrier properties, as indicated by the preliminary results. The talc platelets decreased the moisture adsorption of highly talc-loaded hybrids, although they still exhibited hydrophilic surface characteristics in terms of contact angles.

  • 8. Malho, Jani-Markus
    et al.
    Heinonen, Hanna
    Kontro, Inkeri
    Mushi, Ngesa Ezekiel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Serimaa, Ritva
    Hentze, Hans-Peter
    Linder, Markus B.
    Szilvay, Geza R.
    Formation of ceramophilic chitin and biohybrid materials enabled by a genetically engineered bifunctional protein2014In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, no 55, p. 7348-7351Article in journal (Refereed)
    Abstract [en]

    A bifunctional protein composed of a highly negatively charged oyster shell protein and a chitin-binding domain enabled the formation of biohybrid materials through non-covalent surface modification of chitin nanofibres. The results demonstrate that specific biomolecular interactions offer a route for the formation of biosynthetic materials.

  • 9.
    Mushi, Ngesa Ezekiel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Chitin nanofibers, networks and composites: Preparation, structure and mechanical properties2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chitin is an important reinforcing component in load-bearing structures in many organisms such as insects and crustaceans (i.e. shrimps, lobsters, crabs etc.). It is of increasing interest for use in packaging materials as well as in biomedical applications. Furthermore, biological materials may inspire the development of new man-made material concepts. Chitinmolecules are crystallized in extended chain conformations to form nanoscale fibrils of about 3 nm in diameter. In the present study, novel materialshave been developed based on a new type of chitin nanofibers prepared from the lobster exoskeleton. Improved understanding about effects of chitin from crustaceans and chitin material preparation on structure is provided through Atomic Force Microscopy(AFM) (paper I&II), Scanning Transmission Electron Microscopy(STEM) (paper I&II), X-Ray Diffraction (XRD), Intrinsic Viscosity, solid state 13C Nuclear Magnetic Resonance (NMR) (paper II), Field Emission Scanning Electron Microscopy(FE-SEM) (paper I, II, III, IV & V), Ultraviolet-Visible Spectrophotometryand Dynamic Light Scattering (DLS) (paper III). The presence of protein was confirmed through colorimetric method(paper I & II). An interesting result from the thesis is the new features of chitin nanofiber including small diameter, high molar mass or nanofiber length,and high purity. The structure and composition of the nanofibers confirms this (paper I & II). Furthermore, the structure and properties of the corresponding materials confirm the uniqueness of the present nanofibers: chitin membrane (I & II), polymer matrix composites (III),and hydrogels (paper IV).

    Improved mechanical properties compared with typical data from the literature were confirmed for chitin nanofiber membranes in paper II, chitin-chitosan polymer matrix composites in paper III, and chitin hydrogel in paper IV. Mechanical tests included dynamic mechanical analysis and uniaxial tensile tests. Mechanical properties of chitin hydrogels were evaluated based onrheological and compression properties (paper IV). The values were the highest reported for this kind of chitin material. Furthermore, the relationships between materials structure and properties were analyzed. For membranes and polymer matrix nanocomposites, the degree of dispersion is an important parameter. For the hydrogels, the preparation procedure is very simple and has interesting practical potential.

    Chitin-binding characteristics of cuticular proteins areinteresting fornovel bio-inspired material development. In the present work(paper V), chitin nanofibers with newfeaturesincluding high surface area and low protein content were combined with resilin-like protein possessing the chitin-binding characteristics. Hydrated chitin-resilin nanocomposites with similar composition as in rubber-like insect cuticles were prepared. The main objective was to improve understanding on the role of chitin-binding domain on mechanical properties. Resilin is a rubber-like protein present in insects. The exon I (comprising 18 N-terminal elastic repeat units) together with or without the exon II (a typical cuticular chitin-binding domain) from the resilin gene CG15920 found in Drosophila melanogasterwere cloned and the encoded proteins were expressed as soluble products in Escherichia coli.Resilin-like protein with chitin-binding domain (designated as ResChBD) adsorbedin significant amount to chitin nanofiber surface andprotein-bound cuticle-like soft nanocomposites were formed. Although chitin bindingwas taking place only in proteinswith chitin-binding domain, the global mechanical behavior of the hydrated chitin-resilin nanocomposites was not so sensitive to this chitin-resilin interaction.

    In summary, chitin is an interesting material component with high potential as mechanical reinforcement in a variety of nanomaterials. The present study reports the genesisof novel chitin nanofibers and outlines the basic relationships between structure and properties for materials based on chitin. Future work should be directed towards both bio-inspired studies of the nanocomposite chitin structures in organisms, as well as the industrial applications of chitin waste from the food industry. Chitin nanofibers can strengthen the properties of materials, andprovide optical transparency as well as biological activities such as antimicrobial properties.

  • 10.
    Mushi, Ngesa Ezekiel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Butchosa, Nuria
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Zhou, Qi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Biotechnology (BIO), Glycoscience.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanostructured membranes based on native chitin nanofibers prepared by mild process2014In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 112, p. 255-263Article in journal (Refereed)
    Abstract [en]

    Procedures for chitin nanofiber or nanocrystal extraction from Crustaceans modify the chitin structure significantly, through surface deacetylation, surface oxidation and/or molar mass degradation. Here, very mild conditions were used to disintegrate chitin fibril bundles and isolate low protein content individualized chitin nanofibers, and prepare nanostructured high-strength chitin membranes. Most of the strongly 'bound' protein was removed. The degree of acetylation, crystal structure as well as length and width of the native chitin microfibrils in the organism were successfully preserved. Atomic force microscopy and scanning transmission electron microscopy, showed chitin nanofibers with width between 3 and 4 nm. Chitin membranes were prepared by filtration of hydrocolloidal nanofiber suspensions. Mechanical and optical properties were measured. The highest data so far reported for nanostructured chitin membranes was obtained for ultimate tensile strength, strain to failure and work to fracture. Strong correlation was observed between low residual protein content and high tensile properties and the reasons for this are discussed.

  • 11.
    Mushi, Ngesa Ezekiel
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Mechanical and Industrial Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar es Salaam, Tanzania.
    Nishino, Takashi
    Kobe Univ, Dept Chem Sci & Engn, Kobe, Hyogo 6578501, Japan..
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Strong and Tough Chitin Film from alpha-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition2019In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 7, no 1, p. 1692-1697Article in journal (Refereed)
    Abstract [en]

    Chitin nanofibers are an interesting biological nanomaterial for advanced applications, for example, in medicine, electronics, packaging and water purification. The challenge is to separate chitin nanofibers from protein in the exoskeleton structure of arthropods and avoid nanofibril aggregation to realize the mechanical potential of chitin. In this work, we developed a new method for the preparation of chitin nanofibers from lobster shell exoskeleton using 10 wt % chitosan as a sacrificial polymer. The addition of chitosan in the raw chitin colloidal suspension during high pressure homogenization process at pH 3 significantly reduced the agglomeration of chitin nanofibers as revealed by dynamic light scattering and transmission electron microscopy. Chitin film prepared from the chitin nanofiber suspension by vacuum filtration exhibited a true nanofibrils network structure without fibril aggregations as characterized by scanning electron microscopy. The presence of chitosan not only improves the colloidal stability of chitin nanofibers suspension but also facilitates the formation of chitin nanofiber network structure in the film as indicated by wide-angle X-ray diffraction analysis. The chitin nanofiber film with 4 +/- 1 wt % residual chitosan showed high tensile strength (187.2 +/- 5.6 MPa) and high work of fracture (12.1 +/- 0.4 MJ/m(3)), much higher than those chitin and chitosan films reported previously in the literature.

  • 12.
    Mushi, Ngesa Ezekiel Zekiel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Kochumalayil, Joby J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Cervin, Nicholas Tchang Chang
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nanostructurally Controlled Hydrogel Based on Small-Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564XArticle in journal (Refereed)
    Abstract [en]

    Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4nm diameters, aspect ratios between 25-250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0wt% were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto-porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13kPa at 3wt%) and compression modulus (309kPa at 2wt%) are the highest reported for chitin nanofibers hydrogels.

  • 13.
    Mushi, Ngesa Ezekiel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Membrane and hydrogel properties from chitin fibril structures: Structure and properties at neutral pH2014In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, p. 21-CELL-Article in journal (Other academic)
  • 14.
    Sehaqui, Houssine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Mushi, Ngesa Ezekiel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Morimune, Seira
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nishino, Takashi
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 2, p. 1043-1049Article in journal (Refereed)
    Abstract [en]

    To exploit the mechanical potential of native cellulose fibrils, we report on the preparation of nanopaper with preferred orientation of nanofibrillated cellulose (TEMPO-NFC) by cold drawing. The preparation route is papermaking-like and includes vacuum filtering of a TEMPO-oxidated NFC water dispersion, drawing in wet state and drying. The orientation of the fibrils in the nanopaper was assessed by AFM and wide-angle Xray diffraction analysis, and the effect on mechanical properties of the resulting nanopaper structure was investigated by tensile tests. At high. draw ratio, the degree of orientation is as high as 82 and 89% in and cross-sectional planes of the nanopaper, respectively, and the Young's modulus is 33 GPa. This is much higher than mechanical properties of isotropic nanopaper. The cold drawing method can be also applied to NFC nanocomposites as demonstrated, by preparation of TEMPO-NFC/hydroxyethyl cellulose (HEC) nanocomposites. The introduction of the soft HEC matrix allows further tailoring of the mechanical properties.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf