Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abergel, David
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 21, article id 213103Article in journal (Refereed)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 2.
    Abergel, David
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Edge, Jonathan M.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, p. 065012-Article in journal (Refereed)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 3.
    Abergel, David
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 11, article id 115430Article in journal (Refereed)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 4.
    Abergel, David S. L.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Center for Quantum Materials, Sweden.
    Robustness of topologically protected transport in graphene-boron nitride lateral heterostructures2017In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, no 7, article id 075303Article in journal (Refereed)
    Abstract [en]

    Previously, graphene nanoribbons set in lateral heterostructures with hexagonal boron nitride were predicted to support topologically protected states at low energy. We investigate how robust the transport properties of these states are against lattice disorder. We find that forms of disorder that do not couple the two valleys of the zigzag graphene nanoribbon do not impact the transport properties at low bias, indicating that these lateral heterostructures are very promising candidates for chip-scale conducting interconnects. Forms of disorder that do couple the two valleys, such as vacancies in the graphene ribbon, or substantial inclusions of armchair edges at the graphene-hexagonal boron nitride interface will negatively affect the transport. However, these forms of disorder are not commonly seen in current experiments.

  • 5. Brinkley, M. K.
    et al.
    Abergel, David S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Clader, B. D.
    Two-photon absorption in gapped bilayer graphene with a tunable chemical potential2016In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 28, no 36, article id 365001Article in journal (Refereed)
    Abstract [en]

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one-and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential-all at finite temperature. Our analysis is comprehensive, characterizing one-and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  • 6. Hong, Jongbae
    et al.
    Abergel, David S. L.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Institute for Basic Science, South Korea.
    A universal explanation of tunneling conductance in exotic superconductors2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 31352Article in journal (Refereed)
    Abstract [en]

    A longstanding mystery in understanding cuprate superconductors is the inconsistency between the experimental data measured by scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In particular, the gap between prominent side peaks observed in STS is much bigger than the superconducting gap observed by ARPES measurements. Here, we reconcile the two experimental techniques by generalising a theory which was previously applied to zero-dimensional mesoscopic Kondo systems to strongly correlated two-dimensional (2D) exotic superconductors. We show that the side peaks observed in tunneling conductance measurements in all these materials have a universal origin: They are formed by coherence-mediated tunneling under bias and do not directly reflect the underlying density of states (DOS) of the sample. We obtain theoretical predictions of the tunneling conductance and the density of states of the sample simultaneously and show that for cuprate and pnictide superconductors, the extracted sample DOS is consistent with the superconducting gap measured by ARPES.

  • 7.
    Juricic, Vladimir
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Abergel, David S. L.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    First-order quantum phase transition in three-dimensional topological band insulators2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 16, article id 161403Article in journal (Refereed)
    Abstract [en]

    Topological states of matter are characterized by global topological invariants which change their value across a topological quantum phase transition. It is commonly assumed that the transition between topologically distinct noninteracting gapped phases of fermions is necessarily accompanied by the closing of the band gap as long as the symmetries of the system are maintained. We show that such a quantum phase transition is possible without closing the gap in the case of a three-dimensional topological band insulator. We demonstrate this by calculating the free energy of the minimal model for a topological insulator, the Bernevig-Hughes-Zhang model, and show that as the band curvature continuously varies, a jump between the band-gap minima corresponding to the topologically trivial and nontrivial insulators occurs. Therefore, this first-order phase transition is a generic feature of three-dimensional topological band insulators. For a certain parameter range we predict a reentrant topological phase transition. We discuss our findings in connection with the recent experimental observation of a discontinuous topological phase transition in a family of topological crystalline insulators.

  • 8.
    Kantian, Adrian
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Abergel, David
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    True Bilayer Exciton Condensate of One-Dimensional Electrons2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 3, article id 037601Article in journal (Refereed)
    Abstract [en]

    We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.

  • 9. Kechedzhi, K.
    et al.
    Abergel, David
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. University of Maryland, United States .
    Weakly damped acoustic plasmon mode in transition metal dichalcogenides with Zeeman splitting2014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 23, p. 235420-Article in journal (Refereed)
    Abstract [en]

    We analyze the effect of a strong Zeeman field on the spectrum of collective excitations of monolayer transition metal dichalcogenides. The combination of the Dresselhaus-type spin-orbit coupling and an external Zeeman field results in the lifting of the valley degeneracy in the valence band of these crystals. We show that this lifting of the valley degeneracy manifests in the appearance of an additional plasmon mode with linear in wave-number dispersion along with the standard square root in wave-number mode. Despite this novel mode being subject to Landau damping, it corresponds to a well-defined quasiparticle peak in the spectral function of the electron gas.

  • 10.
    Pershoguba, Sergey S.
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Abergel, David S. L.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Yakovenko, Victor M.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Effects of a tilted magnetic field in a Dirac double layer2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 91, no 8, article id 085418Article in journal (Refereed)
    Abstract [en]

    We calculate the energy spectrum of a Dirac double layer, where each layer has the Dirac electronic dispersion, in the presence of a tilted magnetic field and small interlayer tunneling. We show that the energy splitting between the Landau levels has an oscillatory dependence on the in-plane magnetic field and vanishes at a series of special tilt angles of the magnetic field. Using a semiclassical analysis, we show that these special tilt angles are determined by the Berry phase of the Dirac Hamiltonian. The interlayer tunneling conductance also exhibits an oscillatory dependence on the magnetic field tilt angle, known as the angular magnetoresistance oscillations (AMRO). Our results are applicable to graphene double layers and thin films of topological insulators.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf