Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bouchouireb, Hamza
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Göransson, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Schöggl, Josef-Peter
    University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Baumgartner, Rupert J.
    University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Potting, José
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Architecture and the Built Environment (ABE).
    The inclusion of vehicle shape and aerodynamic drag estimations within the life cycle energy optimisation methodology2019In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 84, p. 902-907Article in journal (Refereed)
    Abstract [en]

    The present work describes a widening of the scope of the Life Cycle Energy Optimisation (LCEO) methodology with the addition of shape-related design variables. They describe the curvature of a vehicle which impacts its aerodynamic drag and therewith its operational energy demand. Aerodynamic drag is taken into account through the estimation of the drag coefficient of the vehicle body shape using computational fluid dynamics simulations. Subsequently, the aforementioned coefficient is used to calculate the operational energy demand associated with the vehicle. The methodology is applied to the design of the roof of a simplified 2D vehicle model which is both mechanically and geometrically constrained. The roof is modelled as a sandwich structure with its design variables consisting of the material compositions of the different layers, their thicknesses as well as the shape variables. The efficacy of the LCEO methodology is displayed through its ability to deal with the arising functional conflicts while simultaneously leveraging the design benefits of the underlying functional alignments. On average, the optimisation process resulted in 2.5 times lighter and 4.5 times less life cycle energy-intensive free shape designs. This redesign process has also underlined the necessity of defining an allocation strategy for the energy necessary to overcome drag within the context of vehicle sub-system redesign.

  • 2.
    Bouchouireb, Hamza
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Göransson, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Schöggl, Josef-Peter
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Baumgartner, Rupert J.
    University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Potting, José
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Towards holistic energy-efficient vehicle product system design: The case for a penalized continuous end-of-life model in the life cycle energy optimisation methodology2019In: 22nd International Conference on Engineering Design, ICED19, Cambridge University Press, 2019, Vol. 1, p. 2901-2910Conference paper (Refereed)
    Abstract [en]

    The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. The present work describes the extension of the LCEO methodology to perform holistic product system optimisation. The constrained design of an automotive component and the design of a subset of the processes which are applied to it during its life cycle are simultaneously optimised to achieve a minimal product system life cycle energy. A subset of the processes of the end-of-life phase of a vehicle’s roof are modelled through a continuous formulation. The roof is modelled as a sandwich structure with its design variables being the material compositions and the thicknesses of the different layers. The results show the applicability of the LCEO methodology to product system design and the use of penalisation to ensure solution feasibility.

  • 3.
    Jank, Merle-Hendrikje
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Göransson, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Baumgartner, Rupert J.
    University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Schöggl, Josef-Peter
    University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    Potting, José
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms). PBL Netherlands Environmental Assessment Agency, The Netherlands.
    Advancing energy efficient early-stage vehicle design through inclusion of end-of-life phase in the life cycle energy optimisation methodology2017In: 12th International Conference on Ecological Vehicles and Renewable Energies Conference, EVER, 2017Conference paper (Refereed)
    Abstract [en]

    Environmentally-friendly energy-efficient vehicles are an important contributor to meet future global transportation needs. To minimise the environmental impact of a vehicle throughout its entire life cycle, the life cycle energy optimisation (LCEO) methodology has been proposed. Using the proxy of life cycle energy, this methodology balances the energy consumption of vehicle production, operation and end-of-life scenarios. The overall aim is to design a vehicle where life cycle energy is at a minimum. While previous work only included vehicle production and operation, this paper aims at advancing the LCEO methodology by including an end-of-life phase. A simplified design study was conducted to illustrate how vehicle design changes when end-of-life treatment is included. Landfilling, incineration and recycling have been compared as end-of-life treatments, although the focus was put on recycling. The results reveal that the optimal design not only changes with the inclusion of an end-of-life phase but it changes with specific end-of-life treatment. 

  • 4.
    Schweiger, G.
    et al.
    Graz Univ Technol, Graz, Austria..
    Nilsson, H.
    Univ Nottingham, Nottingham, England..
    Schöggl, Josef-Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Birk, W.
    Luleå Univ Technol, Luleå, Sweden..
    Posch, A.
    Karl Franzens Univ Graz, Graz, Austria..
    Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms2020In: Applied Mathematics and Computation, ISSN 0096-3003, E-ISSN 1873-5649, Vol. 365, article id UNSP 124713Article, review/survey (Refereed)
    Abstract [en]

    A trend across most areas where simulation-driven development is used is the ever increasing size and complexity of the systems under consideration, pushing established methods of modeling and simulation towards their limits. This paper complements existing surveys on large-scale modeling and simulation of physical systems by conducting expert surveys. We conducted a two-stage empirical survey in order to investigate research needs, current challenges as well as promising modeling and simulation paradigms. Furthermore, we applied the analytic hierarchy process method to prioritise the strengths and weakness of different modeling paradigms. The results of this study show that experts consider acausal modeling techniques to be suitable for modeling large scale systems, while causal techniques are considered less suitable.

  • 5.
    Schweiger, G.
    et al.
    Graz University of Technology, Graz, Austria.
    Nilsson, H.
    University of Nottingham, Nottingham, United Kingdom.
    Schöggl, Josef-Peter
    Birk, W.
    LuleåUniversity of Technology, Luleå, Sweden.
    Posch, A.
    University of Graz, Graz, Austria.
    Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms2020In: Applied Mathematics and Computation, ISSN 0096-3003, E-ISSN 1873-5649, Vol. 365, article id 124713Article in journal (Refereed)
    Abstract [en]

    A trend across most areas where simulation-driven development is used is the ever increasing size and complexity of the systems under consideration, pushing established methods of modeling and simulation towards their limits. This paper complements existing surveys on large-scale modeling and simulation of physical systems by conducting expert surveys. We conducted a two-stage empirical survey in order to investigate research needs, current challenges as well as promising modeling and simulation paradigms. Furthermore, we applied the analytic hierarchy process method to prioritise the strengths and weakness of different modeling paradigms. The results of this study show that experts consider acausal modeling techniques to be suitable for modeling large scale systems, while causal techniques are considered less suitable.

  • 6.
    Schöggl, Josef-Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Göransson, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    A design-theoretic review of Sustainable Product Development literature2019In: 22nd International Conference on Sustainable Innovation, 2019Conference paper (Other academic)
    Abstract [en]

    Improving the socio-ecological performance of products in the design stage is essential for achieving sustainable patterns of production and consumption in line with the aims of the UN Sustainable Development Goals or the EU Action Plan for a Circular Economy. However, the uptake of available methods for sustainable product development (SPD) in practice is still low. Therefore, this paper explores if and how the integration of such methods with theories and models of design can contribute to overcoming the lagging adoption of SPD practices. The systematic review that was conducted on the intersection SPD and design theory research reveals that out of 2849 peer-reviewed publications on SPD, only 27 have a design-theoretic foundation. In fact, only the Theory of Inventive Problem Solving (TRIZ) and Axiomatic Design were utilised in SPD methods. The majority of the reviewed publications address cross-functional conflicts and provide exemplary cases but mainly focus on environmental aspects. Adoptions on a large scale are not reported. We conclude that underpinning SPD methods with theories and models of design constitutes a considerable research gap and that the addressing of it has the potential to further advance their integration with conventional engineering and design tasks.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf