Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bjurhager, Ingela
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Bardage, Stig
    Sundberg, Björn
    Mechanical characterization of juvenile European aspen (Populus tremula) and hybrid aspen (Populus tremula × Populus tremuloides) using full-field strain measurements2008In: Journal of Wood Science, ISSN 1435-0211, E-ISSN 1611-4663, Vol. 54, no 5, p. 349-355Article in journal (Refereed)
    Abstract [en]

    Functional analysis of genes and proteins involved in wood formation and fiber properties often involves phenotyping saplings of transgenic trees. The objective of the present study was to develop a tensile test method for small green samples from saplings, and to compare mechanical properties of juvenile European aspen (Populus tremula) and hybrid aspen (Populus tremula × tremuloides). Small microtomed sections were manufactured and successfully tested in tension parallel to fiber orientation. Strain was determined by digital speckle photography. Results showed significantly lower values for juvenile hybrid aspen in both Young's modulus and tensile strength parallel to the grain. Average Young's moduli spanned the ranges of 5.9-6.6 and 4.8-6.0 GPa for European aspen and hybrid aspen, respectively. Tensile strength was in the range of 45-49 MPa for European aspen and 32-45 MPa for hybrid aspen. The average density (oven-dry) was 284 kg/m3 for European aspen and 221 kg/m3 for hybrid aspen. Differences in mechanical properties correlated with differences in density.

  • 2. Raberg, U.
    et al.
    Edlund, M. L.
    Terziev, N.
    Land, Carl Johan
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Testing and evaluation of natural durability of wood in above ground conditions in Europe - an overview2005In: Journal of Wood Science, ISSN 1435-0211, E-ISSN 1611-4663, Vol. 51, no 5, p. 429-440Article, review/survey (Refereed)
    Abstract [en]

    Natural durability of wood is determined by the European standard EN 252 for specimens in ground contact and EN 113 for basidiomycetes in the laboratory, but no test exists for above ground conditions. For above ground conditions, the European prestandard ENV 12037 and EN 330 are used to determine the durability of treated wood. The most important factors for fungal establishment on the surface and within wood are the moisture content, the surrounding temperature, and the relative humidity. Strength tests are the most sensitive for decay detection, but neither strength tests nor identification of fungi responsible for the decay are included in the standards of above ground durability in field tests. To detect decay, visual examination , pick or splinter tests, and mass loss determination are used. Identifying fungi with traditional methods, e.g., growth on solid medium, is time consuming and complicated. Molecular methods like polymerase chain reaction and sequencing do not require mycological skill for identification to species level, and furthermore the methods do not depend on the subjective judgement like most traditional methods, but are based on the objective information of the target organism (e.g., nucleotide sequences). The next generation of standard field tests will probably consider the drawbacks of standard tests today and be rapid and include both quality tests like molecular identification and nondestructive quantitative tests, e.g., acoustic tests. Laboratory tests can be improved by using fungi identified from field trials and by combining different fungi in the same test and thus simulate degradation in practice.

  • 3.
    Sjökvist, Tinh
    et al.
    Linnaeus Univ, Dept Forestry & Wood Technol, SE-35195 Vaxjo, Sweden.
    Blom, Åsa
    Linnaeus Univ, Dept Forestry & Wood Technol, SE-35195 Vaxjo, Sweden.
    Wålinder, Magnus
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    The infuence of heartwood, sapwood and density on moisture fuctuations and crack formations of coated Norway spruce in outdoor exposure2019In: Journal of Wood Science, ISSN 1435-0211, E-ISSN 1611-4663, Vol. 65, no 45Article in journal (Refereed)
    Abstract [en]

    The moisture sorption behaviour of wood strongly influences the durability of exterior-coated wood. Wood characteristics are known to influence the water sorption of uncoated wood. Despite this, the majority of the research on coated wood has been focused on the coating properties. This study aims to investigate the impact of heartwood, sapwood and density on the moisture content (MC) and crack formation of coated Norway spruce (Picea abies (L.) Karst.). Boards with film-forming coatings or a non-film-forming coating were exposed outdoors during 3 years. Crack development and the mass of the boards were recorded during this period. Heartwood and sapwood samples showed no differences in MC. Thus, a coating seems to reduce the differences in water sorption behaviour that is present in uncoated heartwood and sapwood spruce. The reduction is probably related to wetting properties and different sorption mechanisms, involving free and bond water diffusion. However, the low-density samples had significantly higher MC levels than the high-density samples. The high-density samples with a non-film-forming coating showed a higher number of cracks than those with lower density. Furthermore, sapwood samples had a remarkably high number of cracks when compared to the corresponding heartwood samples, despite a similar density and MC.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf