Change search
Refine search result
123 1 - 50 of 122
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Ali, A.
    et al.
    Rafique, A.
    Kaleemullah, M.
    Abbas, G.
    Ajmal Khan, M.
    Ahmad, M. A.
    Raza, Rizwan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Chinese Academy of Sciences, China.
    Effect of Alkali Carbonates (Single, Binary, and Ternary) on Doped Ceria: A Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 1, p. 806-818Article in journal (Refereed)
    Abstract [en]

    Samarium-doped ceria (SDC) carbonate has become an attractive electrolyte for fuel cells because of its remarkable ion conductivity and high performance. Different doped ceria-carbonate (single-carbonate SDC, binary-carbonate SDC, and ternary-carbonate SDC) electrolytes were synthesized by the coprecipitation/oxalate method, to optimize the electrochemical performance. The structure; morphology; and thermal, optical, and surface properties have been studied using a variety of techniques. The X-ray diffraction results confirmed the successful incorporation of samarium into ceria as a crystalline structure and inclusion of carbonate, which is amorphous in nature. To analyze the conduction mechanism, direct current conductivity was measured in a H2/O2 atmosphere. Doped ceria-binary carbonate ((Li/Na)CO3-SDC) showed the best conductivity of 0.31 S cm-1 and power density of 617 mW cm-2, at 600 °C. The enhancement in the ionic conductivity and performance of the composites is due to the contribution of hybrid ions (O2-, H+). The crystallite size of the composites was in the range 21-41 nm. For the calculation of band gaps, optical absorption spectra of the synthesized powders were analyzed, and they showed a red shift with the band gap energy in the range 2.6-3.01 eV, when compared to that of pure ceria (3.20 eV).

  • 2.
    Alipour, Nazanin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    VOC-Induced Flexing of Single and Multilayer Polyethylene Films As Gas Sensors2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 15, p. 9946-9953Article in journal (Refereed)
    Abstract [en]

    The differential swelling and bending of multilayer polymeric films due to the dissimilar uptake of volatile organic compounds (VOCs; n-hexane, limonene) in the different layers was studied. Motions of thin polyethylene films triggered by the penetrant were investigated to learn more about how their deformation is related to VOC absorption. Single layers of metallocene or low-density polyethylene, and multilayers (2-288-layers) of these in alternating positions were considered. Single-, 24-, and 288 layer films displayed no motion when uniformly subjected to VOCs, but they could display simple curving modes when only one side of the film was wetted with a liquid VOC. Two-layer films displayed simple bending when uniformly subjected to VOCs due to the different swelling in the two layers, but when the VOC was applied to only one side of the film, more complex modes of motion as well as dynamic oscillations were observed (e.g., constant amplitude wagging at 2 Hz for ca. 50 s until all the VOC had evaporated). Diffusion modeling was used to study the transport behavior of VOCs inside the films and the different bending modes. Finally a prototype VOC sensor was developed, where the reproducible curving of the two-layer film was calibrated with n-hexane. The sensor is simple, cost-efficient, and nondestructive and requires no electricity.

  • 3. Al-Shammari, Rusul M.
    et al.
    Baghban, Mohammad Amin
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Al-attar, Nebras
    Gowen, Aoife
    Gallo, Katia
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Rice, James H.
    Rodriguez, Brian J.
    Photoinduced Enhanced Raman from Lithium Niobate on Insulator Template2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 36, p. 30871-30878Article in journal (Refereed)
    Abstract [en]

    Photoinduced enhanced Raman spectroscopy from a lithium niobate on insulator (LNOI)−silver nanoparticle template is demonstrated both by irradiating the template with 254 nm ultraviolet (UV) light before adding an analyte and before placing the substrate in the Raman system (substrate irradiation) and by irradiating the sample in the Raman system after adding the molecule (sample irradiation). The photoinduced enhancement enables up to an ∼sevenfold increase of the surface-enhanced Raman scattering signal strength of an analyte following substrate irradiation, whereas an ∼threefold enhancement above the surface-enhanced signal is obtained for sample irradiation. The photoinduced enhancement relaxes over the course of ∼10 h for a substrate irradiation duration of 150 min before returning to initial signal levels. The increase in Raman scattering intensity following UV irradiation is attributed to photoinduced charge transfer from the LNOI template to the analyte. New Raman bands are observed following UV irradiation, the appearance of which is suggestive of a photocatalytic reaction and highlight the potential of LNOI as a photoactive surface-enhanced Raman spectroscopy substrate.

  • 4.
    Anoshkin, Ilya V.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Campion, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lioubtchenko, Dmitri V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, ISSN 1944-8244, Vol. 10, no 23, p. 19806-19811Article in journal (Refereed)
    Abstract [en]

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 degrees C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 degrees C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  • 5.
    Ao, Xianyu
    et al.
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangzhou 510006, Guangdong, Peoples R China..
    Xu, Xinan
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangzhou 510006, Guangdong, Peoples R China..
    Dong, Jinwu
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangzhou 510006, Guangdong, Peoples R China..
    He, Sailing
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering. South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangzhou 510006, Guangdong, Peoples R China.;Zhejiang Univ, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res, JORCEP, Hangzhou 310058, Zhejiang, Peoples R China..
    Unidirectional Enhanced Emission from 2D Monolayer Suspended by Dielectric Pillar Array2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 41, p. 34817-34821Article in journal (Refereed)
    Abstract [en]

    Monolayers of transition metal dichalcogenides show great promise for optoelectronic devices as atomically thin semiconductors. Although dielectric or metal nanostructures have been extensively studied for tailoring and enhancing emission from monolayers, their applications are limited because of the mode concentrating inside the dielectric or the high optical losses in metals, together with the low quantum yield in monolayers. Here, we demonstrate that a metal-backed dielectric pillar array can suspend monolayers to increase the radiative recombination, and simultaneously, create strongly confined band-edge modes on surface directly accessible to monolayers. We observe unidirectional enhanced emission from WSe2 monolayers on polymer pillar array.

  • 6.
    Aulin, Christian
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Tran, Amy
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lindström, Tom
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Transparent Nanocellulosic Multilayer Thin Films on Polylactic Acid with Tunable Gas Barrier Properties2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 15, p. 7352-7359Article in journal (Refereed)
    Abstract [en]

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3).mu m/m(2).day.kPa at 23 degrees C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  • 7. Badea, Adina
    et al.
    McCracken, Joselle M.
    Tillmaand, Emily G.
    Kandel, Mikhail E.
    Oraham, Aaron W.
    Mevis, Molly B.
    Rubakhin, Stanislav S.
    Popescu, Gabriel
    Sweedler, Jonathan V.
    Nuzzo, Ralph G.
    KTH, School of Chemical Science and Engineering (CHE).
    3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion Cell Response2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 36, p. 30318-30328Article in journal (Refereed)
  • 8.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Holgate, Tim
    Xu, Jianxiao
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Thermal Conductivity and Combustion Properties of Wheat Gluten Foams2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 3, p. 1629-1635Article in journal (Refereed)
    Abstract [en]

    Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam.

  • 9.
    Boujemaoui, Assya
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlsson, Linn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Lahcini, Mohammed
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Sehaqui, Houssine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Facile Preparation Route for Nanostructured Composites: Surface-Initiated Ring-Opening Polymerization of epsilon-Caprolactone from High-Surface-Area Nanopaper2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 6, p. 3191-3198Article in journal (Refereed)
    Abstract [en]

    In this work, highly porous nanopaper, i.e., sheets of papers made from non-aggregated nanofibrillated cellulose (NFC), have been surface-grafted with poly(epsilon-caprolactone) (PCL) by surface-initiated ring-opening polymerization (SI-ROP). The nanopaper has exceptionally high surface area (similar to 300 m(2)/g). The "grafting from" of the nanopapers was compared to "grafting from" of cellulose in the form of filter paper, and in both cases either titanium n-butoxide (Ti(On-Bu)(4)) or tin octoate (Sn(Oct)(2)) was utilized as a catalyst. It was found that a high surface area leads to significantly higher amount of grafted PCL in the substrates when Sn(Oct)2 was utilized as a catalyst. Up to 79 wt % PCL was successfully grafted onto the nanopapers as compared to filter paper where only 2-3 wt % PCL was grafted. However, utilizing Ti(On-Bu)4 this effect was not seen and the grafted amount was essentially similar, irrespectively of surface area. The mechanical properties of the grafted nanopaper proved to be superior to those of pure PCL films, especially at elevated temperatures. The present bottom-up preparation route of NFC-based composites allows high NFC content and provides excellent nanostructural control. This is an important advantage compared with some existing preparation routes where dispersion of the filler in the matrix is challenging.

  • 10.
    Boujemaoui, Assya
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Sanchez, Carmen Cobo
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Engström, Joakim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bruce, Carl
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. RISE Innventia AB, Stockholm, Sweden.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 40, p. 35305-35318Article in journal (Refereed)
    Abstract [en]

    In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (M-n,M-c similar to 56 000 g mo1(-1)). Poly(epsilon-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to physisorption with regard to thermal and mechanical properties of the final nanocomposite. This unique study is of great value for the future design of CNC-based nanocomposites with tailored properties.

  • 11.
    Budnyak, Tetyana
    et al.
    KTH. Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov St, UA-03164 Kiev, Ukraine..
    Gladysz-Plaska, Agnieszka
    Marie Curie Sklodowska Univ, 2 Marie Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Strizhak, Alexander V.
    Taras Shevchenko Natl Univ Kyiv, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine..
    Sternik, Dariusz
    Marie Curie Sklodowska Univ, 2 Marie Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Komarov, Igor V.
    Taras Shevchenko Natl Univ Kyiv, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine..
    Majdan, Marek
    Marie Curie Sklodowska Univ, 2 Marie Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Tertykh, Valentin A.
    Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov St, UA-03164 Kiev, Ukraine..
    Imidazole-2yl-Phosphonic Acid Derivative Grafted onto Mesoporous Silica Surface as a Novel Highly Effective Sorbent for Uranium(VI) Ion Extraction2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 7, p. 6681-6693Article in journal (Refereed)
    Abstract [en]

    A new imidazol-2yl-phosphonic acid/mesoporous silica sorbent (ImP(O)(OH)(2)/SiO2) was developed and applied for uranium(VI) ion removal from aqueous solutions. The synthesized material was characterized by fast kinetics and an extra-high adsorption capacity with respect to uranium. The highest adsorption efficiency of U(VI) ions was obtained for the reaction system at pH 4 and exceeded 618 mg/g. The uranium(VI) sorption proceeds quickly in the first step within 60 min of the adsorbent sites and ion interactions. Moreover, the equilibrium time was determined to be 120 min. The equilibrium and kinetic characteristics of the uranium(VI) ions uptake by synthesized sorbent was found to follow the Langmuir-Freundlich isotherm model and pseudo-second-order kinetics rather than the Langmuir, Dubinin-Radushkevich, and Temkin models and pseudo-first-order or intraparticle diffusion sorption kinetics. The adsorption mechanism for uranium on the sorbent was clarified basing on the X-ray photoelectron spectroscopy (XPS) analysis. The model of UO22+ binding to surface of the sorbent was proposed according to the results of XPS, i.e., a 1:1 U-to-P ratio in the sorbed complex was established. The regeneration study confirms the ImP(O)(OH)(2)/SiO2 sorbent can be reused. A total of 45% of uranium ions was determined as originating from the sorbent leaching in the acidic solutions, whereas when the basic solutions were used, the removal efficiency was 12%.

  • 12. Cappel, Ute B
    et al.
    Svanström, Sebastian
    Lanzilotto, Valeria
    Johansson, Fredrik O L
    Aitola, Kerttu
    Philippe, Bertrand
    Giangrisostomi, Erika
    Ovsyannikov, Ruslan
    Leitner, Torsten
    Föhlisch, Alexander
    Svensson, Svante
    Mårtensson, Nils
    Boschloo, Gerrit
    Lindblad, Andreas
    Rensmo, Håkan
    Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells.2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 40, p. 34970-34978Article in journal (Refereed)
    Abstract [en]

    ) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.

  • 13.
    Carosio, Federico
    et al.
    Politecn Torino, I-15121 Alessandria, Italy.
    Kochumalayil, Jose
    Cuttica, F.
    Camino, G.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Oriented Clay Nanopaper from Biobased Components Mechanisms for Superior Fire Protection Properties2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 10, p. 5847-5856Article in journal (Refereed)
    Abstract [en]

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric Materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to Other clay nanocomposites and fiber composites. The Corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) Materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/ MTM interactions for char formation.

  • 14.
    Carrick, Christopher
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Pendergraph, Samuel A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanometer Smooth, Macroscopic Spherical Cellulose Probes for Contact Adhesion Measurements2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 23, p. 20928-20935Article in journal (Refereed)
    Abstract [en]

    Cellulose spheres were prepared by dissolving cellulose fibers and subsequently solidifying the solution in a nonsolvent. Three different solution concentrations were tested and several nonsolvents were evaluated for their effect on the formation of spheres. Conditions were highlighted to create cellulose spheres with a diameter of similar to 1 mm and a root-mean-square surface roughness of similar to 1 nm. These solid spheres were shown to be easily chemically modified without changing the mechanical properties significantly. Contact adhesion measurements were then implemented with these spheres against a poly(dimethylsiloxane) (PDMS) elastomer in order to quantify the adhesion. Using Johnson-Kendall-Roberts (JKR) theory, we quantified the adhesion for unmodified cellulose and hydrophobic cellulose spheres. We highlight the ability of these spheres to report more accurate adhesion information, compared to spin-coated thin films. The application of these new cellulose probes also opens up new possibilities for direct, accurate measurement of adhesion between cellulose and other materials instead of using uncertain surface energy determinations to calculate the theoretical work of adhesion between cellulose and different solid materials.

  • 15.
    Cervin, Nicholas Tchang
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Johanson, Erik
    Larsson, Per A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 18, p. 11682-11689Article in journal (Refereed)
    Abstract [en]

    Porous materials from cellulose nanofibrils (CNFs) have been prepared using Pickering foams from aqueous dispersions. Stable wet foams were first produced using surface-modified CNFs as stabilizing particles. To better maintain the homogeneous pore structure of the foam after drying, the foams were dried in an oven on a liquid-filled porous ceramic frit. The cell structure was studied by scanning electron microscopy and liquid porosimetry, the mechanical properties were studied by compression testing, and the liquid absorption capacity was determined both with liquid porosimetry and by soaking in water. By controlling the charge density of the CNFs, it was possible to prepare dry foams with different densities, the lowest density being 6 kg m(-3), that is, a porosity of 99.6%. For a foam with a density of 200 kg m(-3) the compressive Young's modulus was 50 MPa and the energy absorption to 70% strain was 2.3 MJ M-3. The use of chemically modified CNFs made it possible to prepare cross-linked foams with water-durable and wet-resilient properties. These foams absorbed liquid up to 34 times their own weight and were able to release this liquid under compression and to reabsorb the same amount when the pressure was released.

  • 16.
    Chen, Cheng
    et al.
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Li, Hongping
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Ding, Xingdong
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Cheng, Ming
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Li, Henan
    Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China..
    Xu, Li
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Qiao, Fen
    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China..
    Li, Huaming
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Molecular Engineering of Triphenylamine-Based Non-Fullerene Electron-Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 45, p. 38970-38977Article in journal (Refereed)
    Abstract [en]

    There has been a growing interest in the design and synthesis of non-fullerene electron transport materials (ETMs) for perovskite solar cells (PSCs), which may overcome the drawbacks of traditional fullerene derivatives. In this work, a novel donor-acceptor (D-A) structured ETM termed TPA-3CN is presented by molecular engineering of triphenylamine (TPA) as the donor group and (3-cyano-4,5,5-trimethyl-2(5H)-furanylidene) malononitrile as the acceptor group. To further improve the electron mobility and conductivity and achieve excellent photovoltaic performance, a solution processable n-type dopant is introduced during the ETM spin-coating step. After device optimization, PSCs based on the doped TPA-3CN exhibit an impressive power conversion efficiency (PCE) of 19.2% with a negligible hysteresis. Benefitting from the low temperature and good solution processability of ETM TPA-3CN, it was further applied in flexible inverted PSCs and an impressive PCE of 13.2% was achieved, which is among the highest values reported for inverted flexible fullerene-free PSCs.

  • 17. Chen, Cheng
    et al.
    Yang, Xichuan
    Cheng, Ming
    Zhang, Fuguo
    Zhao, Jianghua
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Efficient Panchromatic Organic Sensitizers with Dihydrothiazole Derivative as pi-Bridge for Dye-Sensitized Solar Cells2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 21, p. 10960-10965Article in journal (Refereed)
    Abstract [en]

    Novel organic dyes CC201 and CC202 with dihydrothiazole derivative as pi-bridge have been synthesizedand applied in the DSSCs. With the synergy electron-withdrawing of dihydrothiazole and cyanoacrylic acid, these two novel dyes CC201 and CC202 show excellent response in the region of 500-800 nm. An efficiency as high as 6.1% was obtained for the device fabricated by sensitizer CC202 together with cobalt electrolyte under standard light illumination (AM 1.5G, 100 mW cm(-2)). These two novel D-pi-A panchromatic organic dyes gave relatively high efficiencies except common reported squaraine dyes.

  • 18. Chen, Song
    et al.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Yuanyuan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Wang, Xingzhu
    Ong, Beng
    Wong, Wai-Kwok
    Zhu, Xunjin
    Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 15, p. 13231-13239Article in journal (Refereed)
    Abstract [en]

    To develop new hole-transporting materials (HTMs) for efficient and stable perovskite solar. cells (PSCs), 5,10,15,20-tetrakis{4-[N,N-di(4-thethoxylphenyl)amino-phenyl]}-porphyrin was prepared in gram scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]-benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically a high hole Mobility and very favorable energetics for hole extraction that render them a new class of HTMs in organometallic halide PSCs. As expected, ZnP as HTM in PSCs affords a competitive power conversion efficiency (PCE) of 17.78%,which is comparable to that of the most powerful HTM of Spiro-MeOTAD (18.59%) under the same working conditions. Mean-While, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a lower PCE of 15.36%. Notably, the PSCs employing ZnP show a much,better stability than Spiro-OMeTAD. Moreover, the two-porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable PSCs. To the best of our knowledge, this is the best performance that porphyrin-based solar cells could show with PCE > 17%.

  • 19. Chen, Zhe
    et al.
    Lu, Jinfeng
    Ai, Yuejie
    Ji, Yongfei
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Adschiri, Tadafumi
    Wan, Lijun
    Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 51, p. 35132-35137Article in journal (Refereed)
    Abstract [en]

    Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H2SO4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

  • 20. Chernyy, Sergey
    et al.
    Järn, Mikael
    Shimizu, Kyoko
    Swerin, Agne
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pedersen, Steen Uttrup
    Daasbjerg, Kim
    Makkonen, Lasse
    Claesson, Per
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Iruthayaraj, Joseph
    Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties: Effect of Counter ions2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 9, p. 6487-6496Article in journal (Refereed)
    Abstract [en]

    This work demonstrates the feasibility of superhydrophilic polyelectrolyte brush coatings for anti-icing applications. Five different types of ionic and nonionic polymer brush coatings of 25-100 nm thickness were formed on glass substrates using silane chemistry for surface premodification followed by polymerization via the SI-ATRP route. The cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride] and the anionic [poly(3-sulfopropyl methacrylate), poly(sodium methacrylate)] polyelectrolyte brushes were further exchanged with H+, Li+, Na+, K+, Ag+, Ca2+, La3+, C16N+, F-, Cl-, BF4-, SO42-, and C12SO3- ions. By consecutive measurements of the strength of ice adhesion toward ion-incorporated polymer brushes on glass it was found that Li+ ions reduce ice adhesion by 40% at 18 degrees C and 70% at 10 degrees C. Ag+ ions reduce ice adhesion by 80% at -10 degrees C relative to unmodified glass. In general, superhydrophilic polyelectrolyte brushes exhibit better anti-icing property at -10 degrees C compared to partially hydrophobic brushes such as poly(methyl methacrylate) and surfactant exchanged polyelectrolyte brushes. The data are interpreted using the concept of a quasi liquid layer (QLL) that is enhanced in the presence of highly hydrated ions at the interface. It is suggested that the ability of ions to coordinate water is directly related to the efficiency of a given anti-icing coating based on the polyelectrolyte brush concept.

  • 21. Chouhan, Dimple
    et al.
    Thatikonda, Naresh
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Nilebäck, Linnea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.
    Widhe, Mona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Hedhammar, My
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Mandal, Biman B.
    Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 28, p. 23560-23572Article in journal (Refereed)
    Abstract [en]

    Silk is considered to be a potential biomaterial for a wide number of biomedical applications. Silk fibroin (SF) can be retrieved in sufficient quantities from the cocoons produced by silkworms. While it is easy to formulate into scaffolds with favorable mechanical properties, the natural SF does not contain bioactive functions. Spider silk proteins, on the contrary, can be produced in fusion with bioactive protein domains, but the recombinant procedures are expensive, and large-scale production is challenging. We combine the two types of silk to fabricate affordable, functional tissue-engineered constructs for wound-healing applications. Nanofibrous mats and microporous scaffolds made of natural silkworm SF are used as a bulk material that are top-coated with the recombinant spider silk protein (4RepCT) in fusion with a cell-binding motif, antimicrobial peptides, and a growth factor. For this, the inherent silk properties are utilized to form interactions between the two silk types by self-assembly. The intended function, that is, improved cell adhesion, antimicrobial activity, and growth factor stimulation, could be demonstrated for the obtained functionalized silk mats. As a skin prototype, SF scaffolds coated with functionalized silk are cocultured with multiple cell types to demonstrate formation of a bilayered tissue construct with a keratinized epidermal layer under in vitro conditions. The encouraging results support this strategy of fabrication of an affordable bioactive SF-spider silk-based biomaterial for wound dressings and skin substitutes.

  • 22. D'Amario, Luca
    et al.
    Jiang, Roger
    Cappel, Ute B.
    Gibson, Elizabeth A.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Rensmo, Hakan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hammarstrom, Leif
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 39, p. 33470-33477Article in journal (Refereed)
    Abstract [en]

    The most common material for dye-sensitized photocathodes is mesoporous NiO. We transformed the usual brownish NiO to be more transparent by reducing high valence Ni impurities. Two pretreatment methods have been used: chemical reduction by NaBH4 and thermal reduction by heating. The power conversion efficiency of the cell was increased by 33% through chemical treatment, and an increase in open-circuit voltage from 105 to 225 mV was obtained upon heat treatment. By optical spectroelectrochemistry, we could identify two species with characteristically different spectra assigned to Ni3+ and Ni4+. We suggest that the reduction of surface Ni3+ and Ni (4+) to Ni (2+) decreases the recombination reaction between holes on the NiO surface with the electrolyte. It also keeps the dye firmly on the surface, building a barrier for electrolyte recombination. This causes an increase in open-circuit photovoltage for the treated film.

  • 23. Damasco, Jossana A.
    et al.
    Chen, Guanying
    Shao, Wei
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Huang, Haoyuan
    Song, Wentao
    Lovell, Jonathan F.
    Prasad, Paras N.
    Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 16, p. 13884-13893Article in journal (Refereed)
    Abstract [en]

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioirnaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanopartides with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanopartides with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanopartides, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of similar to 2 nm on the similar to 22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanopartides in phosphate buffered saline.

  • 24. de Francisco, Raquel
    et al.
    Tiemblo, Pilar
    Hoyos, Mario
    Gonzalez-Arellano, Camino
    Garcia, Nuria
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Synytska, Alla
    Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 21, p. 18998-19010Article in journal (Refereed)
    Abstract [en]

    Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications.

  • 25. de Oliveira, R.
    et al.
    Sjödin, N.
    Fokine, Michael
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    Margulis, Walter
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    de Matos, C.
    Norin, L.
    Fabrication and Optical Characterization of Silica Optical Fibers Containing Gold Nanoparticles2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 1, p. 370-375Article in journal (Refereed)
    Abstract [en]

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  • 26. Decrop, Deborah
    et al.
    Pardon, Gaspard
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Brancato, Luigi
    Kil, Dries
    Zandi Shafagh, Reza
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Kokalj, Tadej
    Haraldsson, Klas Tommy
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Puers, Robert
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Lammertyn, Jeroen
    Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252Article in journal (Refereed)
    Abstract [en]

    Bead-based microwell array technology is growing as an ultrasensitive target detection tool. However, dissemination of the technology and its commercial use are hampered by current fabrication methods for hydrophilic-in-hydrophobic microwell arrays, which are either expensive or labour-intensive to manufacture, or which results in low bead seeding efficiencies. In this paper, we present a novel single-step manufacturing method for imprinting cheap and disposable hydrophilic-in-hydrophobic microwell arrays suitable for single-molecule detection. Single-step imprinting of hydrophilic-in-hydrophobic microwell arrays is made possible using an innovative surface energy replication approach by means of a hydrophobic thiol-ene polymer formulation. In this polymer, hydrophobic-moiety-containing monomers self-assemble against the hydrophobic surface of the imprinting stamp, which results in a hydrophobic replica surface after polymerization. After removing the stamp, hydrophilic wells are obtained with the well bottoms consisting of glass substrate. We demonstrate that the hydrophilic-in-hydrophobic imprinted microwell arrays enable successful and efficient self-assembly of individual water droplets and seeding of magnetic beads with loading efficiencies up to 96%. We also demonstrate the suitability of the microwell arrays for the isolation and detection of single-molecules achieving a limit of detection of 17.4 aM when performing a streptavidin-biotin binding assay. The ease of manufacturing demonstrated here is expected to allow translation of digital microwell array technology towards diagnostic applications.

  • 27.
    Eita, Mohamed
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Wagberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Spin-Assisted Multilayers of Poly(methyl methacrylate) and Zinc Oxide Quantum Dots for Ultraviolet-Blocking Applications2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 6, p. 2920-2925Article in journal (Refereed)
    Abstract [en]

    Thin UV-blocking films of poly(methyl methacrylate) (PMMA) and ZnO quantum dots (QDs) were built-up by spin-coating. Ellipsometry reveals average thicknesses of 9.5 and 8.6 nm per bilayer before and after heating at 100 degrees C for one hour, respectively. The surface roughness measured by Atomic force microscopy (AFM) was 3.6 and 8.4 nm for the one and ten bilayer films, respectively. The linear increase in thickness as well as the low surface roughness increment per bilayer indicates a stratified multilayer structure and a smooth interface without: aggregation. The absorption of UV radiation increased with increasing number of bilayers. At the same time, transmission was damped at wavelengths shorter than 375 nm. The thin films had a high and constant transparency in the visible region. Green-light emitting QDs could be detected by confocal microscopy at a concentration of 20% in a single layer of PMMA/ZnO. PMMA/ZnO QDs thin films are hydrophobic, as indicated by contact angle measurements.

  • 28.
    Fernandes, Susana C. M.
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience. University of the Basque Country, Spain.
    Alonso-Varona, Ana
    Palomares, Teodoro
    Zubillaga, Veronica
    Labidi, Jalel
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience. University of Adelaide, Australia.
    Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 30, p. 16558-16564Article in journal (Refereed)
    Abstract [en]

    Ultraviolet radiations have many detrimental effects in living organisms that challenge the stability and function of cellular structures. UV exposure also alters the properties and durability of materials and affects their lifetime. It is becoming increasingly important to develop new biocompatible and environmentally friendly materials to address these issues. Inspired by the strategy developed by fish, algae, and microorganisms exposed to UV radiations in confined ecosystems, we have constructed novel UV-protective materials that exclusively consist of natural compounds. Chitosan was chosen as the matrix for grafting mycosporines and mycosporine-like amino acids as the functional components of the active materials. Here, we show that these materials are biocompatible, photoresistant, and thermoresistant, and exhibit a highly efficient absorption of both UV-A and UV-B radiations. Thus, they have the potential to provide an efficient protection against both types of UV radiations and overcome several shortfalls of the current UV-protective products. In practice, the same concept can be applied to other biopolymers than chitosan and used to produce multifunctional materials. Therefore, it has a great potential to be exploited in a broad range of applications in living organisms and nonliving systems.

  • 29.
    Fu, Qiliang
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Medina, Lilian
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Carosio, Federico
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 41, p. 36154-36163Article in journal (Refereed)
    Abstract [en]

    Eco-friendly materials need "green" fire-retardancy treatments, which offer opportunity for new wood nanotechnologies. Balsa wood (Ochroma pyramidale) was delignified to form a hierarchically structured and nanoporous scaffold mainly composed of cellulose nanofibrils. This nanocellulosic wood scaffold was impregnated with colloidal montmorillonite clay to form a nanostructured wood hybrid with high flame-retardancy. The nanoporous scaffold was characterized by scanning electron microscopy and gas adsorption. Flame-retardancy was evaluated by cone calorimetry, whereas thermal and thermo-oxidative stabilities were assessed by thermogravimetry. The location of well-distributed clay nanoplatelets inside the cell walls was confirmed by energy-dispersive X-ray analysis. This unique nanostructure dramatically increased the thermal stability because of thermal insulation, oxygen depletion, and catalytic charring effects. A coherent organic/inorganic charred residue was formed during combustion, leading to a strongly reduced heat release rate peak and reduced smoke generation.

  • 30.
    Galland, Sylvain
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 22, p. 20524-20534Article in journal (Refereed)
    Abstract [en]

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 degrees C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4 is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  • 31.
    Gao, Jiajia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    El-Zohry, Ahmed M.
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Trilaksana, Herri
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Gabrielsson, Erik
    Dyenamo AB, Greenhouse Labs, Tekn Ringen 38A, SE-11428 Stockholm, Sweden..
    Leandri, Valentina
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Ellis, Hanna
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    D'Amario, Luca
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Safdari, Majid
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Andersson, Gunther
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Light-Induced Interfacial Dynamics Dramatically Improve the Photocurrent in Dye-Sensitized Solar Cells: An Electrolyte Effect2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 31, p. 26241-26247Article in journal (Refereed)
    Abstract [en]

    A significant increase in the photocurrent generation during light soaking for solar cells sensitized by the triphenylamine-based D-pi-A organic dyes (PD2 and LEG1) and mediated by cobalt bipyridine redox complexes has been observed and investigated. The crucial role of the electrolyte has been identified in the performance improvement. Control experiments based on a pretreatment strategy reveals TBP as the origin. The increase in the current and IPCE has been interpreted by the interfacial charge-transfer kinetics studies. A slow component in the injection kinetics was exposed for this system. This change explains the increase in the electron lifetime and collection efficiency. Photoelectron spectroscopic measurements show energy shifts at the dye/TiO2 interface, leading us to formulate a hypothesis with respect to an electrolyte induced dye reorganization at the surface.

  • 32.
    Ghanadpour, Maryam
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Carosio, F.
    Ruda, M. C.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films to Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 38, p. 32543-32555Article in journal (Refereed)
    Abstract [en]

    Ultrathin nanocomposite films were prepared by combining cellulose nanofibrils (CNFs) prepared from phosphorylated pulp fibers (P-CNF) with montmorillonite (MMT), sepiolite (Sep) clay, or sodium hexametaphosphate (SHMP). The flame-retardant and heat-protective capability of the prepared films as casings for a polyethylene (PE) film was investigated. Heating the coated PE in air revealed that the polymer film was thoroughly preserved up to at least 300 °C. The P-CNF/MMT coatings were also able to completely prevent the ignition of the PE film during cone calorimetry, but neither the P-CNF/Sep nor the P-CNF/SHMP coating could entirely prevent PE ignition. This was explained by the results from combined thermogravimetry Fourier transform infrared spectroscopy, which showed that the P-CNF/MMT film was able to delay the release of PE decomposition volatiles and shift its thermal degradation to a higher temperature. The superior flame-retardant performance of the P-CNF/MMT films is mainly attributed to the unique compositional and structural features of the film, where P-CNF is responsible for increasing the char formation, whereas the MMT platelets create excellent barrier and thermal shielding properties by forming inorganic lamellae within the P-CNF matrix. These films showed a tensile strength of 304 MPa and a Young's modulus of 15 GPa with 10 wt % clay so that this composite film was mechanically stronger than the previously prepared CNF/clay nanopapers containing the same amount of clay. 

  • 33. Golda-Cepa, M.
    et al.
    Chorylek, A.
    Chytrosz, P.
    Brzychczy-Wloch, M.
    Jaworska, J.
    Kasperczyk, J.
    Hakkarainen, M.
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Kotarba, A.
    Multifunctional PLGA/Parylene C Coating for Implant Materials: An Integral Approach for Biointerface Optimization2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 34, p. 22093-22105Article in journal (Refereed)
    Abstract [en]

    Functionalizing implant surfaces is critical for improving their performance. An integrated approach was employed to develop a multifunctional implant:coating based on oxygen plasma-modified parylene C and drug-loaded, biodegradable poly(DL-lactide-co-glycolide) (PLGA). The key functional attributes of the coating (i.e., anti-corrosion, biocompatible, anti-infection, and therapeutic) were thoroughly characterized at each fabrication step by spectroscopic, microscopic, and biologic methods and at different scales, ranging from molecular, through the nano- and microscales to the macroscopic scale. The chemistry of each layer was demonstrated separately, and their mutual affinity was shown to be indispensable for the development of versatile coatings, for implant applications.

  • 34.
    Gustafsson, Emil
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. McMaster University, Canada.
    Pelton, Robert
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 36, p. 24161-24167Article in journal (Refereed)
    Abstract [en]

    The surface of regenerated cellulose membranes was modified by irreversible adsorption-of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room, temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was, studied as a function of PVAm molecular weight, amine :content,: and deposition pH of the polyelectrolyte. Surprisingly the PVAm CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates,that a CMC layer of the order of 10 nm Was necessary. There are no obvious covalent cross linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the wet adhesion values.

  • 35. Hao, Yan
    et al.
    Saygili, Yasemin
    Cong, Jiayan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Eriksson, Anna
    Yang, Wenxing
    Zhang, Jinbao
    Polanski, Enrico
    Nonomura, Kazuteru
    Zakeeruddin, Shaik Mohammed
    Gratzel, Michael
    Hagfeldt, Anders
    Boschloo, Gerrit
    Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 48, p. 32797-32804Article in journal (Refereed)
    Abstract [en]

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-pi-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-pi-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-pi-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  • 36. Hoang, Minh Tam
    et al.
    Pham, Ngoc Duy
    Han, Ji Hun
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Oh, Ilwhan
    Integrated Photoelectrolysis of Water Implemented On Organic Metal Halide Perovskite Photoelectrode2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 19, p. 11904-11909Article in journal (Refereed)
    Abstract [en]

    Herein we report on integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. Generic OMH perovskite material and device architecture are highly susceptible to degradation by moisture and water. We found that decomposition of perovskite devices proceeds by water ingress through pinholes in upper layers and is strongly affected by applied bias/light and electrolyte pH. It was also found that a pinhole-free hole transport layer (HTL) could significantly enhance the stability of the perovskite photoelectrode, thereby extending the photoelectrode lifetime to several tens of minutes, which is an unprecedented record-long operation. Furthermore, a carbon nanotube (CNT)/polymer composite layer was developed that can effectively protect the underlying perovskite layer from electrolyte molecules.

  • 37. Hou, Jungang
    et al.
    Sun, Yiqing
    Cao, Shuyan
    Wu, Yunzhen
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
    Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 29, p. 24600-24607Article in journal (Refereed)
    Abstract [en]

    Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2 arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.

  • 38.
    Hu, Maowei
    et al.
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Shen, Junyu
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Yu, Ze
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Liao, Rong-Zhen
    Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Hubei, Peoples R China..
    Gurzadyan, Gagik G.
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Yang, Xichuan
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Hagfeldt, Anders
    Ecole Polytech Fed Lausanne, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Wang, Mei
    Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China.
    Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 36, p. 30409-30416Article in journal (Refereed)
    Abstract [en]

    The identification of an efficient and stable redox mediator is of paramount importance for commercialization of dye-sensitized solar cells (DSCs). Herein, we report a new class of copper complexes containing diamine-dipyridine tetradentate ligands (L1 = N,N'-dibenzyl-N,N'-bis-(pyridin-2-ylmethyl)ethylenediamine; L2 = N,N'-dibenzyl-N,N'-bis (6-methyl-pyridin-2-ylmethyl)ethylenediamine) as redox mediators in DSCs. Devices constructed with [Cu(L2)](2+/+) redox couple afford an impressive power conversion efficiency (PCE) of 9.2% measured under simulated one sun irradiation (100 mW cm(-2), AM 1.5G), which is among the top efficiencies reported thus far for DSCs with copper complex-based redox mediators. Remarkably, the excellent air, photo, and electrochemical stability of the [Cu(L2)](2+/+) complexes renders an outstanding long-term stability of the whole DSC device, maintaining similar to 90% of the initial efficiency over 500 h under continuous full sun irradiation. This work unfolds a new platform for developing highly efficient and stable redox mediators for large-scale application of DSCs.

  • 39.
    Huang, Jing
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Yuan, Chunze
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Chen, Hong
    Sun, Junliang
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 21, p. 18808-18815Article in journal (Refereed)
    Abstract [en]

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution effective approach to introduce can be an different ligands.

  • 40.
    Höglund, Anders
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Odelius, Karin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide)2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 5, p. 2788-2793Article in journal (Refereed)
    Abstract [en]

    The rate of degradation of large-scale synthesized polylactide (PLA) of industrial origin was compared with that of laboratory-scale synthesized poly(L-lactide) (PLLA) of similar molar mass. The structural discrepancy between the two material types resulted in a significant difference in degradation rate. Although the hydrolysis of industrial PLA was substantially faster than that of PLLA, the PLA material became less brittle and fragmented to a lesser extent during degradation. In addition, a comprehensive picture of the degradation of industrial PLA was obtained by subjecting different PLA materials to hydrolytic degradation at various temperatures and pH's for up to 182 days. The surrounding environment had no effect on the degradation rate at physiological temperature, but the degradation was faster in water than in a phosphate buffer after prolonged degradation at temperatures above the T-g. The degree of crystallinity had a greater influence than the degradation environment on the rate of hydrolysis. For a future use of polylactide in applications where bulk plastics are generally used today, for example plastic packages, the appropriate PLA grade must be chosen based on the conditions prevailing in the degradation environment.

  • 41.
    Jacques, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Lindbergh, Göran
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Zenkert, Dan
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Leijonmarck, Simon
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Hellqvist Kjell, Maria
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 25, p. 13898-13904Article in journal (Refereed)
    Abstract [en]

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 muW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  • 42.
    Jafarzadeh, Shadi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Claesson, Per Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. SP Technical Research Institute of Sweden, Sweden.
    Sundell, Per-Erik
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Thormann, Esben
    Nanoscale Electrical and Mechanical Characteristics of Conductive Polyaniline Network in Polymer Composite Films2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 21, p. 19168-19175Article in journal (Refereed)
    Abstract [en]

    The presence and characteristics of a connected network of polyaniline (PANI) within a composite coating based on polyester acrylate (PEA) has been investigated. The bulk electrical conductivity of the composite was measured by impedance spectroscopy. It was found that the composite films containing PANI have an electrical conductivity level in the range of semiconductors (order of 10–3 S cm–1), which suggests the presence of a connected network of the conductive phase. The nanoscopic distribution of such a network within the cured film was characterized by PeakForce tunneling atomic force microscopy (AFM). This method simultaneously provides local information about surface topography and nanomechanical properties, together with electrical conductivity arising from conductive paths connecting the metallic substrate to the surface of the coating. The data demonstrates that a PEA-rich layer exists at the composite–air interface, which hinders the conductive phase to be fully detected at the surface layer. However, by exposing the internal structure of the composites using a microtome, a much higher population of a conductive network of PANI, with higher elastic modulus than the PEA matrix, was observed and characterized. Local current–voltage (IV) spectroscopy was utilized to investigate the conduction mechanism within the nanocomposite films, and revealed non-Ohmic characteristics of the conductive network.

  • 43. Jana, Avijit
    et al.
    Bai, Linyi
    Li, Xin
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhao, Yanli
    Morphology Tuning of Self-Assembled Perylene. Monoimide from Nanoparticles to Colloidosomes with Enhanced Excimeric NIR Emission for Bioimaging2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 3, p. 2336-2347Article in journal (Refereed)
    Abstract [en]

    Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye. Controlled entrapment of the dye into pluronic F127 micellar system to preserve its monomeric green emission in aqueous media was also established. The aggregation process of the PeIm dye to form organic nanoparticles (NPs) was evaluated experimentally by the means of transmission electron microscope imaging as well as theoretically by the molecular dynamics simulation studies. Tuning the morphology along with the formation of colloidosomes by the controlled self-aggregation of PeIm NPs in aqueous suspension was demonstrated successfully. Finally, both excimeric and monomeric emissive PeIm NPs as well as PeIm colloidosomes were employed for the bioimaging in vitro.

  • 44. Jena, Naresh K.
    et al.
    Araujo, Rafael B.
    Shukla, Vivekanand
    Ahuja, Rajeev
    KTH, School of Engineering Sciences (SCI), Applied Physics. Uppsala University, Sweden.
    Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 19, p. 16148-16158Article in journal (Refereed)
    Abstract [en]

    Borophene, single atomic-layer sheet of boron (Science 2015, 350, 1513), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li+(Na+) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li0.445B2H2, which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li+. Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na+, respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  • 45. Kamra, Tripta
    et al.
    Xu, Changgang
    Montelius, Lars
    Schnadt, Joachim
    Wijesundera, Samurdhi A.
    Yan, Mingdi
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. University of Massachusetts Lowell, United States.
    Ye, Lei
    Photoconjugation of Molecularly Imprinted Polymer Nanoparticles for Surface-Enhanced Raman Detection of Propranolol2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 49, p. 27479-27485Article in journal (Refereed)
    Abstract [en]

    We report a simple and versatile method to covalently immobilize molecularly imprinted polymer (MIP) nanoparticles on a Raman active substrate (Klarite) using a disulfide-derivatized perfluorophenylazide (PFPA-disulfide). Gold-coated Klarite was functionalized with PFPA-disulfide via a gold sulfur bond. Upon light radiation, the available azido groups were converted to highly reactive singlet perfluorophenyl nitrene that undergoes a CH insertion reaction and form covalent bonds with the MIP nanoparticles. The resulting surfaces were characterized using scanning electron microscopy and surface enhanced Raman spectroscopy to study the morphology and template affinity of the surfaces, respectively. The Raman measurements clearly show a dose-responsive signal when propranolol binds to the MIP surface. Because the MIP particles were covalently attached to the Raman active substrate, the sensing surface was stable and could be reused after regeneration in acetic acid solution. The MIP-based Raman sensor was used successfully to detect propranolol in urine samples (7.7 X 10(-4) M). Our results show that the high selectivity of MLPs and the fingerprint Raman identification can be integrated into a compact sensing unit using high-efficiency photoconjugation. Thus, the method proposed is reliable, efficient and fast for fabricating label-free chemical sensors.

  • 46.
    Kanoth, Bipinbal Parambath
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Claudino, Mauro
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Johansson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 30, p. 16303-16310Article in journal (Refereed)
    Abstract [en]

    Natural rubber/cellulose nanocrystals (NR/CNCs) form true biocomposites from renewable resources and are demonstrated to show significantly improved thermo-mechanical properties and reduced stress-softening. The nanocomposites were prepared from chemically functionalized CNCs bearing thiols. CNCs served as both reinforcing and cross-linking agents in the NR matrix, and the study was designed to prove the cross-linking function of modified CNCs. CNCs were prepared from cotton, and the cross-linkable mercapto-groups were introduced onto the surface of CNCs by esterification. Nanocomposite films were prepared by dispersing the modified CNCs (m-CNCs) in NR matrix by solution casting. The cross-links at the filler matrix (m-CNCs NR) interface were generated by photochemically initiated thiol-ene reactions as monitored by real-time FTIR analysis. The synergistic effects of reinforcement and chemical cross-linking at the m-CNCs NR interface on structure, thermo-mechanical, and stress-softening behavior were investigated. Methods included field emission scanning electron microscopy (FE-SEM), swelling tests, dynamic mechanical analysis, and tensile tests. Compared to biocomposites from NR with unmodified CNCs, the NR/m-CNCs nanocomposites showed 2.4-fold increase in tensile strength, 1.6-fold increase in strain-to-failure, and 2.9-fold increase in work-of-fracture at 10 wt % of m-CNCs in NR.

  • 47. Keshavarzi, Neda
    et al.
    Rad, Farshid Mashayekhy
    Mace, Amber
    Ansari, Farhan
    Akhtar, Farid
    Nilsson, Ulrika
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bergstrom, Lennart
    Nanocellulose-Zeolite Composite Films for Odor Elimination2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 26, p. 14254-14262Article in journal (Refereed)
    Abstract [en]

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 mu m thick zeolite CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography mass spectroscopy (GC/MS) analysis showed that the CNF zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  • 48.
    Koklukaya, Oruc
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carosio, Federico
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 34, p. 29082-29092Article in journal (Refereed)
    Abstract [en]

    Nanometer thin films consisting of cationic chitosan (Ch), anionic poly(vinylphosphonic acid) (PVPA), and anionic montmorillonite clay (MMT) are deposited on highly porous, wet-stabilized cellulose nanofibril (CNF) aerogels via the layer-by-layer (LbL) technique. Model experiments with silicon oxide surfaces are used to study the details of LbL formation and the multilayer structure. Formation of layers on the aerogels is also investigated as a function of solution concentration by use of polyelectrolyte titration. Thermogravimetric analysis indicates that the LbL coating significantly improves thermal stability of the CNF aerogel. Horizontal flame test shows that aerogels coated with five quadlayers of Ch/PVPA/Ch/MMT, using solutions/dispersion of high concentration, are able to self-extinguish immediately after removal of flame, and LbL-coated aerogels do not ignite under heat flux (35 kW/m(2)) in cone calorimetry. The LbL-coated aerogel can prevent flame penetration from a torch focused on the surface, achieving temperature drops up to 650 degrees C across the 10 mm thick specimen for several minutes. LbL treatment is hence a rapid and highly effective way to specifically tailor the surface properties of CNF aerogels in order to confer unprecedented flame-retardant characteristics.

  • 49.
    Kong, Na
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Xie, Sheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Zhou, Juan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Menendez, Margarita
    Solis, Dolores
    Park, JaeHyeung
    Proietti, Giampiero
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Ramström, Olof
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Yan, Mingdi
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. University of Massachusetts Lowell, United States.
    Catalyst-Free Cycloaddition Reaction for the Synthesis of Glyconanoparticles2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 41, p. 28136-28142Article in journal (Refereed)
    Abstract [en]

    A new conjugation method for the immobilization of carbohydrates on nanomaterials was demonstrated simply by mixing perfluorophenyl azide-functionalized silica nanoparticles (SNPs), an amine-derivatized carbohydrate, and phenylacetaldehyde under ambient conditions without any catalyst. The density of carbohydrates on the glyconanoparticles was determined using the quantitative F-19 NMR (F-19 qNMR) technique; for example, the density of D-mannose (Man) on Man-SNPs was 2.5 +/- 0.2 x 10(-16) nmol/nm(2). The glyconanoparticles retained their binding affinity and selectivity toward cognate lectins. The apparent dissociation constant of the glyconanoparticles was measured by a fluorescence competition assay, where the binding affinity of Man-SNPs was almost 4 orders of magnitude higher than that of Man with concanavalin A. Moreover, even with a ligand density of 2.6 times lower than Man-SNPs synthesized by the copper catalyzed azide-alkyne cycloaddition, the binding affinity of Man-SNPs prepared by the current method was more than 4 times higher.

  • 50.
    Köklükaya, Oruc
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carosio, Federico
    Grunlan, Jaime C.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 42, p. 23750-23759Article in journal (Refereed)
    Abstract [en]

    The highly flammable character of cellulose-rich fibers from wood limits their use in some advanced materials. To suppress the flammability and introduce flame-retardant properties to individual pulp fibers, we deposited nanometer thin films consisting of cationic chitosan (CH) and anionic poly(vinylphosphonic acid) (PVPA) on fibers using the layer-by-layer (LbL) technique. The buildup of the rnultilayer film was investigated in the presence and absence of salt (NaCl) using model cellulose surfaces and a quartz crystal microbalance technique. Fibers were then treated with the same strategy, and the treated fibers were used to prepare paper sheets. A horizontal flame test (HFT) and cone calorimetry were conducted to evaluate the combustion behavior of paper sheets as a function of the number of bilayers deposited on fibers. In HFT, paper made of fibers coated with 20 CH/PVPA bilayers (BL), self-extinguished the flame, while uncoated fibers were completely consumed. Scanning electron microscopy of charred paper after HFT revealed that a thin shell of the charred polymeric multilayer remained after the cellulose fibers had been completely oxidized. Cone calorimetry demonstrated that the phosphorus-containing thin films (20 BL is similar to 25 nm) reduced the peak heat release rate by 49%. This study identifies a unique and highly effective way to impart flame-retardant characteristic to pulp fibers and the papers made from these fibers.

123 1 - 50 of 122
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf