kth.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ashitani, Tatsuya
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Yamagata University, Japan.
    Garboui, S. S.
    Schubert, Fredrik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Vongsombath, Chanda
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. National University of Laos (NOUL), Laos.
    Liblikas, I.
    Pålsson, Katinka
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Institute of Technology, Estonia.
    Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae)2015In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702Article in journal (Refereed)
    Abstract [en]

    Hyptis suaveolens (Lamiaceae), a plant traditionally used as a mosquito repellent, has been investigated for repellent properties against nymphs of the tick Ixodesricinus. Essential oils and volatile compounds of fresh and dried leaves, from plants originating from Laos and Guinea-Bissau, were identified by GC–MS and tested in a tick repellency bioassay. All the essential oils were strongly repellent against the ticks, even though the main volatile constituents differed in their proportions of potentially tick repellent chemicals. (+)/(−)-sabinene were present in high amounts in all preparations, and dominated the emission from dry and fresh leaves together with 1,8-cineol and α-phellandrene. 1,8-Cineol and sabinene were major compounds in the essential oils from H. suaveolens from Laos. Main compounds in H. suaveolens from Guinea-Bissau were (−)-sabinene, limonene and terpinolene. Among the sesquiterpene hydrocarbons identified, α-humulene exhibited strong tick repellency (96.8 %). Structure activity studies of oxidation or sulfidation products of germacrene D, α-humulene and β-caryophyllene, showed increased tick repellent activity: of mint sulfide (59.4 %), humulene-6,7-oxide (94.5 %) and caryophyllene-6,7-oxide (96.9 %). The substitution of oxygen with sulfur slightly lowered the repellency. The effects of the constituents in the oils can then be regarded as a trade off between the subsequently lower volatility of the sesquiterpene derivatives compared to the monoterpenes and may thus increase their potential usefulness as tick repellents.

  • 2. Elmhalli, Fawzeia
    et al.
    Garboui, Samira S.
    Borg-Karlson, Anna-Karin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Mozuraitis, Raimondas
    Baldauf, Sandra L.
    Grandi, Giulio
    The repellency and toxicity effects of essential oils from the Libyan plants Salvadora persica and Rosmarinus officinalis against nymphs of Ixodes ricinus2019In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702, Vol. 77, no 4, p. 585-599Article in journal (Refereed)
    Abstract [en]

    Essential oils extracted from the leaves of Libyan Rosemary (Rosmarinus officinalis L.), and Miswak (Salvadora persica L.) were evaluated for their acaricidal and repellent effects on Ixodes ricinus L. nymphs (Acari: Ixodidae) using a bioassay based on an open filter paper method'. Rosmarinus officinalis leaf essential oil diluted to 0.5 and 1 mu l/cm(2) in acetone exhibited, respectively, 20 and 100% tick mortality after about 5h of exposure. A total of 50 and 95% of I. ricinus nymphs were killed by direct contact with the oil when exposed to lethal concentrations (LC)of 0.7 mu l/cm(2) (LC50) and 0.95 mu l/cm(2) (LC95), respectively. The LC50 (0.5 mu l/cm(2)) was reached before the end of the first 24h of exposure time (ET), as tick mortality at 24h was 60%. Salvadora persica leaf essential oil at 1 mu l/cm(2) showed a significant repellency effect against I. ricinus nymphs at 1.5h ET. A 95% repellency was observed at a repellent concentration (RC95) of 1 mu l/cm(2) of S. persica, but no significant mortality was recorded at this dose of S. persica oil. Gas chromatography-mass spectrometry analyses showed that the main monoterpenes in both oils were 1,8-cineol, -pinene, and -pinene, although in markedly different proportions. These results suggest that essential oils have substantial potential as alternative approaches for I. ricinus tick control.

  • 3.
    Elmhalli, Fawzeia
    et al.
    Uppsala Univ, Evolutionary Biol Ctr, Dept Systemat Biol, Norbyvagen 18d, SE-75236 Uppsala, Sweden..
    Pålsson, Katinka
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Orberg, Jan
    Uppsala Univ, Dept Environm Toxicol, Evolutionary Biol Ctr, Uppsala, Sweden..
    Grandi, Giulio
    Swedish Univ Agr Sci SLU, Dept Biomed Sci & Vet Publ Hlth, Uppsala, Sweden..
    Acaricidal properties of ylang-ylang oil and star anise oil against nymphs of Ixodes ricinus (Acari: Ixodidae)2018In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702, Vol. 76, no 2, p. 209-220Article in journal (Refereed)
    Abstract [en]

    Ylang-ylang oil (YYO) from Cananga odorata (Lam.) Hook.f. & Thomson and star anise oil (SAO) from Illicium verum Hook.f. were tested at four concentrations 0.05, 0.1, 0.2, 0.4 mu l/cm(2). Mortality rates were obtained by counting dead nymphs at 30-min intervals during the first 5h after the start of exposure and then at 24, 48 and 72h. Mortality increased with increasing oil concentration and time of exposure. The two highest concentrations of YYO (0.2, 0.4 mu l/cm(2)) gave maximum lethal concentrations (LC) of 50 and 95% mortality after 4.5h exposure. Mortality of 95% was obtained after 24h with the next highest dose (0.1 mu l/cm(2)), whereas LC95 required 3days with the lowest YYO (0.05 mu l/cm(2)). The lethal effect time (LT) was correlated with the duration of exposure, with a significant effect at 0.4l YYO/cm(2) after 3h' (LT50=3.2h, LT95=4.3h). In contrast, only the highest concentration of SAO, 0.4 mu l SAO/cm(2), showed increasing mortality with time of exposure. This reached LT50 after 10h and LT95 after 24h. However, with the lower concentration (0.2 mu l/cm(2)) 50% mortality was reached after 24h and 100% at 72h. At to the lowest concentration of SAO (0.1 mu l/cm(2)), 67% mortality after 48h. The study indicates that YYO and SAO exhibit strong acaricidal properties against nymphs of I. ricinus and suggest that both YYO and SAO should be evaluated as potentially useful in the control of ticks.

  • 4.
    El-Seedi, Hesham R.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. Uppsala University, Sweden.
    Azeem, Muhammad
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. COMSATS Institute of Information Technology, Pakistan.
    Khalil, Nasr S.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. Agricultural Research Centre, Egypt.
    Sakr, Hanem H.
    Khalifa, Shaden A. M.
    Awang, Khalijah
    Saeed, Aamer
    Farag, Mohamed A.
    AlAjmi, Mohamed F.
    Pålsson, Katinka
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae)2017In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702, Vol. 73, no 1, p. 139-157Article in journal (Refereed)
    Abstract [en]

    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 A mu g/cm(2) and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. alpha-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, alpha-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.

  • 5. Garboui, Samira S.
    et al.
    Jaenson, Thomas G. T.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Palsson, Katinka
    Repellency of methyl jasmonate to Ixodes ricinus nymphs (Acari: Ixodidae)2007In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702, Vol. 42, no 3, p. 209-215Article in journal (Refereed)
    Abstract [en]

    In our search for tick repellents of plant origin, to be used as alternatives to commercial arthropod repellents, we investigated the effect of the well known plant signaling compound methyl jasmonate (MJ) using nymphs of the tick Ixodes ricinus. In laboratory tests, pieces of cloth with MJ at 0.075, 0.15, 0.30 and 0.75 mg/cm(2) yielded increasing repellencies against the nymphs: 57%, 71%, 92% and 99%, respectively, of the nymphs did not cling to the cloth. Repellency of MJ was also investigated in a tick-infested woodland area in central Sweden. Cotton flannel cloths sprayed with 0.05, 0.1 or 0.2 mg/cm(2) MJ dissolved in acetone were dragged over the ground vegetation. The numbers of nymphs on the treated cloths were significantly lower than those on the untreated cloth. Thus, MJ has, at the concentrations tested, significant repellent activity against I. ricinus nymphs.

  • 6.
    Schubert, Fredrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Pålsson, Katinka
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Santangelo, Ellen
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sulfate turpentine: a resource of tick repellent compounds2017In: Experimental & applied acarology, ISSN 0168-8162, E-ISSN 1572-9702, Vol. 72, no 3, p. 291-302Article in journal (Refereed)
    Abstract [en]

    Compounds with tick (Ixodes ricinus) repellent properties were isolated from sulfate turpentine consisting of Norway spruce (80%) and Scots pine (20%) from southern Sweden. The turpentine was divided into two fractions by distillation under reduced pressure resulting in one monoterpene hydrocarbon fraction and a residual containing higher boiling terpenoids. The monoterpene fraction was further oxidized with SeO2 to obtain oxygenated monoterpenes with potential tick repellent properties. The oxidized fraction and the high boiling distillation residual were each separated by medium pressure liquid chromatography. The fractions were tested for tick repellency and the compounds in those with highest tick repellency were identified by GC-MS. The fractions with highest repellency contained, mainly (-)-borneol, and mixtures of (+)- and (-)-1-terpineol and terpinen-4-ol. The enantiomers of borneol showed similar tick repellent properties.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf