Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Azhar, Shoaib
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wang, Yan
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Lindström, Mikael E.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Enhanced extraction of high-molecular-weight wood polymers with chemoenzymatic treatment2012In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 243Article in journal (Other academic)
  • 2.
    Wang, Yan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Exploring Biopolymer-Clay Nanocomposite Materials by Molecular Modelling2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, bio-nanocomposites made from two alternative biopolymers and montmorillonite (Mnt) clay have been investigated by molecular modelling. These biopolymers are xyloglucan (XG) and chitosan (CHS), both of which are abundant, renewable, and cost-effective. After being reinforced by Mnt clay nanoparticles, the polymer nanocomposites gains in multifunctionality and in the possibility to register unique combinations of properties, like mechanical, biodegradable, electrical, thermal and gas barrier properties. I apply molecular dynamics (MD) simulations to study the interfacial mechanisms of the adhesion of these biopolymers to the Mnt nanoplatelets at an atomic level.

    For the XG-Mnt system, a strong binding affinity of XG to a fully hydrated Mnt interface was demonstrated. It was concluded that the dominant driving force for the interfacing is the enthalpy, i.e. the potential energy of the XG-Mnt interacting system. The adsorbed XG favors a flat conformation with a galactose residue in its side chain that facilitates the adsorption of the polymer to the nanoclay.

     The XG adsorption was found do depend strongly on the hydration ability of counterions. The binding affinity of XG to Mnt was found to be strongest in the K-Mnt/XG system, followed by, in decreasing order, Na-Mnt/XG, Li-Mnt/XG, and Ca-Mnt/XG. The competing mechanism between ions, water and the XG in the interlayer region was shown to play an important role.

    The dimensional stability upon moisture exposure, i.e. the ability of a material to resist swelling, is an important parameter for biopolymer-clay nanocomposites. While pure clay swells significantly even at low hydration levels, it is here shown that for the XG-Mnt system, at a hydration level below 50%, the inter-lamellar spacing is well preserved, suggesting a stable material performance. However, at higher hydration levels, the XG-Mnt composite was found to exhibit swelling at the same rate as the pure hydrated Mnt clay.

    For the CHS-Mnt system, the significant electrostatic interactions from the direct charge-charge attraction between the polymer and the Mnt clay play a key role in the composite formation. Varying the degree of acetylation (DA) and the degree of protonation (DPr) resulted in different effects on the polymer-clay interaction. For the heavily acetylated CHS (DA > 50%, also known as chitin), the strong adhesion of the neutral chitin to the Mnt clay was attributed to strong correlation between the acetyl functional groups and the counterions which act as an electrostatic “glue”. Similarly, the poor adhesion of the fully deprotonated (DPr = 0%) neutral CHS to the clay is attributed to a weak correlation between the amino functional group and the counterions.

    The stress-strain behavior of the CHS-Mnt composite shows that the mechanical properties are highly affected by the volume fraction of the Mnt clay and the degree of exfoliation of the composite. The material structure has a close relationship to the material properties.

    Biopolymer-clay nanocomposites hold a bright future to replace petroleum-derived polymer plastics and will become widely used in common life. The theme of the thesis is that further critical improvements of these materials can be accomplished by development of the experimental methods in conjunction with increased understanding of the interactions between polymer, clay, water, ions, solutions in the polymer-clay mixtures provided by molecular modelling. 

  • 3.
    Wang, Yan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Stress-strain behavior in chitosan-montmorillonite nanocomposites studied by molecular dynamics simulationsManuscript (preprint) (Other academic)
    Abstract [en]

    We have performed molecular dynamics (MD) simulations to study the mechanical properties of bionanocomposites composed of chitosan (CHS) and montmorillonite (Mnt) clay. The stress-strain behavior and the Young’s modulus are calculated to estimate the mechanical properties of the material. Our results show that the mechanical properties of the CHS-Mnt composites are determined by many factors. The volume fraction and the degree of exfoliation of the clay platelets play the key roles. Meanwhile, the molecular adhesion between the polymer CHS and the Mnt at the wet interface is also a main factor. The stress-strain curve of the partially exfoliated CHS-Mnt composite shows significantly larger stiffness than the fully exfoliated one due to the volume fraction of clay is higher in the former case. The stiffness is slightly improved by adding more polymer in the fully exfoliated complex. We conclude that a higher volume faction of the Mnt is an essential premise to fabricate a high-performance composite material. The composite material structure has been found highly relevant to the mechanical properties. In addition, a strong molecular adhesion between the polymer and the clay would be of great importance for the mechanical properties in the composite material. The work provides insight into how to predict the mechanical properties in polymer-clay nanocomposites and may therefore be helpful for the design of bionanocomposite materials.

  • 4.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Bergenstråhle-Wohlert, Malin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Swelling and dimensional stability of xyloglucan/montmorillonite nanocomposites in moist conditions from molecular dynamics simulations2017In: Computational Materials Science, ISSN 0927-0256, Vol. 128, p. 191-197Article in journal (Refereed)
    Abstract [en]

    Nacre-mimetic biocomposites made from the combination of montmorillonite clay and the hemicellulose xyloglucan give materials that retain much of their material properties even at high relative humidity. Here, a model composite system consisting of two clay platelets intercalated by xyloglucan oligomers was studied at different levels of hydration using molecular dynamics simulations, and compared to the pure clay. It was found that xyloglucan inhibits swelling of the clay at low water contents by promoting the formation of nano-sized voids that fill with water without affecting the material's dimensions. At higher water contents the XG itself swells, but at the same time maintaining contact with both platelets across the gallery, thereby acting as a physical cross-linker in a manner similar to the role of XG in the plant cell wall.

  • 5.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Kochumalayil, Joby J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Molecular Adhesion at Clay Nanocomposite Interfaces Depends on Counterion Hydration-Molecular Dynamics Simulation of Montmorillonite/Xyloglucan2015In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, no 1, p. 257-265Article in journal (Refereed)
    Abstract [en]

    Nacre-mimetic clay/polymer nanocomposites with clay platelet orientation parallel to the film surface show interesting gas barrier and mechanical properties. In moist conditions, interfacial adhesion is lowered and mechanical properties are reduced. Molecular dynamic simulations (MD) have been performed to investigate the effects of counterions on molecular adhesion at montmorillonite clay (Mnt)-xyloglucan (XG) interfaces. We focus on the role of monovalent cations K+, Na+, and Li+ and the divalent cation Ca2+ for mediating and stabilizing the Mnt/XG complex formation. The conformation of adsorbed XG is strongly influenced by the choice of counterion and so is the simulated work of adhesion. Free energy profiles that are used to estimate molecular adhesion show stronger interaction between XG and clay in the monovalent cation system than in divalent cation system, following a decreasing order of K-Mnt, Na-Mnt, Li-Mnt, and Ca-Mnt. The Mnt clay hydrates differently in the presence of different counterions, leading to a chemical potential of water that is highest in the case of K-Mnt, followed by Na-Mnt and Li-Mnt, and lowest in the case of Ca-Mnt. This means that water is most easily displaced from the interface in the case of K-Mnt, which contributes to the relatively high work of adhesion. In all systems, the penalty of replacing polymer with water at the interface gives a positive contribution to the work of adhesion of between 19 and 35%. Our work confirms the important role of counterions in mediating the adsorption of biopolymer XG to Mnt clays and predicts potassium or sodium as the best choice of counterions for a Mnt-based biocomposite design.

  • 6.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Hydration and dimensional stability of the intercalated galleries in xyloglucan/montmorillonite nanocomposites studied by molecular dynamics simulationsManuscript (preprint) (Other academic)
    Abstract [en]

    The outstanding properties of biological composite nacre materials have for a long time inspired research and development of man-made bionanocomposites. One of the most recent nacre-mimetic bionanocomposites comprising xygloglucan (XG) and montmorillonite (Mnt) clay has been investigated by related model systems through Molecular dynamics (MD) simulations. The expansion of the inter-gallery of the XG-Mnt composites when exposed to water, has been found to be a key issue for the material property. In order to shed light on the mechanism for this swelling behavior we have investigated the relation between the hydration and the dimensional stability of the inter-gallery in XG-Mnt composites, exploring also the role of the dynamic state of the polymer XG for the dimensional change. We find that at a hydration level below 50%, XG-Mnt possesses good dimensional stability, suggesting a constant performance of the material, while at a hydration level of 75%, the expansion ratio of the composite is found to be slightly smaller than the swelling of Mnt clay. At the four-layer hydrate formation with a hydration level of 100%, the swelling ratios of clay and the2composite reach the same value, suggesting a critical point of losing dimensional stability. We conclude that the strong adhesion between the polymer XG and the Mnt clay is the main driving force for the preservation of the stability at lower hydration conditions, while the dynamics of the XG polymer is related to the losing of dimensional stability for the composite at higher hydration levels. The ramification of these results in terms of moisture sensitivity of the material is briefly discussed.

  • 7.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clayManuscript (preprint) (Other academic)
    Abstract [en]

    Molecular dynamics simulations have been performed to investigate molecular adhesion of chitin and chitosan oligomers to montmorillonite (Mnt) clay at different degrees of acetylation (DA, 0%, 20%, 40%, 60%, 80% and 100%) and different degree of protonation (DPr, 0%, 50%, 100% mimicking pH > 6.5, pH = 6.5, pH < 4, respectively) under fully hydrated conditions. Although the Mnt surface is negatively charged and a variation in DA also implies going from a positively charged oligomer at DA = 0% to a neutral oligomer at DA = 100%, the simulations show unexpectedly variation of the total molecular adhesion as a function of DA. From our analysis we propose that this quantitatively similar adhesion arise from two different mechanisms. At low DA, the oligomer is rich in positively charged amino groups interacting strongly with the negatively charged surface by direct electrostatic interaction. On the other hand, at high DA, electrically neutral acetyl groups are strongly correlated with the Na+ counter ions, which are in all cases stuck at the surface and the counter ions seem to act as ‘glue’ between the acetyl groups and the Mnt. However, when protonation was decreased, adhesion was significantly lowered. The reason is conclued by differences in charge distributions of the respective functional groups. A further investigation on the intramolecular hydrogen bonds formed in CHT or CHS shows that the adsorbed conformation of the polymer is also highly affected by DA. This work provides fundamental insights into adhesion mechanisms and is, of potential importance for the development of polymer-clay based composite materials.

  • 8.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clay2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 67, p. 54580-54588Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics simulations have been performed to investigate molecular adhesion of chitin and chitosan oligomers to montmorillonite (Mnt) clay at different degrees of acetylation (DA, 0%, 20%, 40%, 60%, 80% and 100%) and different degree of protonation (DPr, 0%, 50%, 100% mimicking pH > 6.5, pH = 6.5, pH < 4, respectively) under fully hydrated conditions. Although the Mnt surface is negatively charged and a variation in DA also implies going from a positively charged oligomer at DA = 0% to a neutral oligomer at DA = 100%, the simulations show unexpectedly small variation of the total molecular adhesion as a function of DA. From our analysis we propose that this quantitatively similar adhesion arises from two different mechanisms. At low DA, the oligomer is rich in positively charged amino groups interacting strongly with the negatively charged surface by direct electrostatic interaction. On the other hand, at high DA, electrically neutral acetyl groups are strongly correlated with the Na+ counter ions, which are in all cases stuck at the surface and the counter ions seem to act as 'glue' between the acetyl groups and the Mnt. However, when protonation was decreased, adhesion was affected and significantly lowered at neutral conditions (DPr = 0%). The reason is concluded to be differences in charge distributions of the respective functional groups. A further investigation on the intramolecular hydrogen bonds formed in CHT or CHS shows that the adsorbed conformation of the polymer is also highly affected by DA. This work provides fundamental insights into adhesion mechanisms and is of potential importance for the development of polymer-clay based composite materials.

  • 9.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay-polysaccharide nanocomposites2014In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, no 25, p. 9541-9547Article in journal (Refereed)
    Abstract [en]

    Bio-composites comprised of the polysaccharide xyloglucan (XG) and montmorillonite (MTM) clay has potential as a 'green' replacement of conventional petroleum-derived polymers in the packaging industry. These materials have been shown to possess excellent material properties, even in high relative humidity. Although interfacial interaction between XG and MTM, and the molecular structure of XG can be identified as key parameters for the complex formation process and the resulting tensile properties, these properties are usually difficult to address using experimental methods. Here we use molecular dynamics (MD) simulations to study the adsorption of fully atomistic models of both native and chemically modified XG to MTM clay surfaces in explicit water. We show that the driving force for adsorption is a favorable change in enthalpy, and furthermore that native XG adsorbs stronger than modified XG. This highlights the importance of molecular structure details to molecular adhesion. The present study provides insights into the molecular scale adsorption mechanisms and can therefore help in designing routes for further improvements of bio-composite materials.

  • 10.
    Wang, Yan
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Tu, Yaoquan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Jose, Joby Kochumalayil
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Molecular dynamic simulations of xyloglucan adsorbed onto Na-montmorillonite clay: Exploration of interaction mechanisms and conformational properties2013In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 246, p. 342-POLY-Article in journal (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf