Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dyakov, Sergey
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Skolkovo Institute of Science and Technology, Russia.
    Zhigunov, D. M.
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Shcherbakov, M. R.
    Fedyanin, A. A.
    Vorontsov, A. S.
    Kashkarov, P. K.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Qiu, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Zhejiang University, China.
    Zacharias, M.
    Tikhodeev, S. G.
    Gippius, N. A.
    Optical properties of silicon nanocrystals covered by periodic array of gold nanowires2016In: Physical Review B, ISSN 2469-9950, Vol. 93, no 20, article id 205413Article in journal (Refereed)
    Abstract [en]

    Extinction and photoluminescence spectra are experimentally and theoretically studied for a periodic array of gold nanowires deposited on top of a dielectric substrate containing silicon nanocrystals. Quasiguided modes are observed in the substrate resulting in modification of optical properties of silicon nanocrystals. Our calculations of extinction and photoluminescence spectra are in good agreement with experimental results. The periodicity provides a powerful tool for achieving a high photoluminescence outcoupling efficiency of silicon nanocrystals.

  • 2.
    Lobov, G. S.
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Marinins, A.
    KTH, School of Information and Communication Technology (ICT).
    Etcheverry, S.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT).
    Vasileva, Elena
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Sugunan, A.
    Laurell, F.
    Thylén, Lars
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wosinski, L.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT).
    Toprak, M. S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component2017In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 7, no 1, p. 52-61Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are semiconducting high-aspect ratio nanostructures with anisotropic absorption and birefringence properties found at different regions of the optical spectrum. In addition, P3HT nanofibers possess an ability to be aligned by an external electric field, while being dispersed in a liquid. In this manuscript we show that such collective ordering of nanofibers, similar to liquid crystal material, significantly changes the properties of transmitted light. With a specially fabricated opto-fluidic component, we monitored the phase and transmission modulation of light propagating through the solution of P3HT nanofibers, being placed in the electric field with strength up to 0.1 V/μm. This report describes a technique for light modulation, which can be implemented in optical fiber-based devices or on-chip integrated components.

  • 3.
    Lobov, Gleb
    et al.
    KTH, School of Engineering Sciences (SCI).
    Marinins, Aleksandrs
    KTH, School of Engineering Sciences (SCI).
    Shafagh, R. Zandi
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Zhao, Y
    KTH, School of Engineering Sciences (SCI).
    van der Wijngaart, W.
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Wosinski, L.
    KTH, School of Engineering Sciences (SCI).
    Thylen, L
    KTH, School of Biotechnology (BIO).
    Toprak, M. S.
    KTH, School of Engineering Sciences (SCI).
    Haraldsson, T.
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Östling, M.
    KTH, School of Information and Communication Technology (ICT).
    Popov, S.
    KTH, School of Engineering Sciences (SCI).
    Electro-optical effects of high aspect ratio P3HT nanofibers colloid in polymer micro-fluid cells2017In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 42, no 11, p. 2157-2160Article in journal (Refereed)
    Abstract [en]

    This Letter reports the electro-optical (EO) effect of Poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofibers colloid in a polymer micro-fluidic EO cell. P3HT nanofibers are high aspect ratio semiconducting nanostructures, and can be collectively aligned by an external alternating electric field. Optical transmission modulated by the electric field is a manifestation of the electro-optical effect due to high inner crystallinity of P3HT nanofibers. According to our results, the degree of alignment reaches a maximum at 0.6 V/μm of electric field strength, implying a big polarizability value due to geometry and electrical properties of P3HT nanofibers. We believe that one-dimensional crystalline organic nanostructures have a large potential in EO devices due to their significant anisotropy, wide variety of properties, low actuation voltages, and opportunity to be tailored via adjustment of the fabrication process.

  • 4.
    Lobov, Gleb S.
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Li, Jiantong
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Sugunan, A.
    Thylén, Lars
    KTH, School of Biotechnology (BIO). Hewlett-Packard Laboratories, United States.
    Wosinski, Lech
    KTH, School of Information and Communication Technology (ICT).
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution2015In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 5, no 11, p. 2642-2647Article in journal (Refereed)
    Abstract [en]

    The nanofiber morphology of regioregular Poly-3- hexylthiophene (P3HT) is a 1D crystalline structure organized by π - π stacking of the backbone chains. In this study, we report the impact of electric field on the orientation and optical properties of P3HT nanofibers dispersed in liquid solution. We demonstrate that alternating electric field aligns nanofibers, whereas static electric field forces them to migrate towards the cathode. The alignment of nanofibers introduces anisotropic optical properties, which can be dynamically manipulated until the solvent has evaporated. Time resolved spectroscopic measurements revealed that the electro-optical response time decreases significantly with the magnitude of applied electric field. Thus, for electric field 1.3 V ·μm-1 the response time was measured as low as 20 ms, while for 0.65 V ·μm-1 it was 110-150 ms. Observed phenomenon is the first mention of P3HT supramolecules associated with electrooptical effect. Proposed method provides real time control over the orientation of nanofibers, which is a starting point for a novel practical implementation. With further development P3HT nanofibers can be used individually as an anisotropic solution or as an active component in a guest-host system.

  • 5.
    Lobov, Gleb S.
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT).
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Li, Jiantong
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Sugunan, A.
    Thylen, Lars
    KTH, School of Biotechnology (BIO).
    Wosinski, L.ech
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Fotonik och mikrovågsteknik, FMI.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Popov, Sergei Yu
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Electro-optical response of P3HT nanofibers in liquid solution2015In: Asia Communications and Photonics Conference, ACPC 2015, 2015Conference paper (Refereed)
    Abstract [en]

    AC electric poling introduces in P3HT nanofibers anisotropic electro-optical response and birefringence. Along with birefringence, such material exhibits strong amplitude modulation which makes it more efficient alternative to liquid crystals. © 2015 OSA.

  • 6.
    Lobov, Gleb
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT).
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Li, Jiantong
    KTH, School of Information and Communication Technology (ICT).
    Sugunan, A.
    Thylén, Lars
    KTH, School of Biotechnology (BIO). Hewlett-Packard Laboratories, United States.
    Wosinski, L.ech
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Photonics and Microwave Engineering , FMI.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Dynamic Manipulation of Optical Anisotropy of Suspended Poly-3-hexylthiophene Nanofibers2016In: Advanced Optical Materials, ISSN 2195-1071, Vol. 4, no 10, p. 1651-1656Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​

  • 7.
    Marinins, Aleksandrs
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Knudde, Nicolas
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Air-Suspended SU-8 Strip Waveguides With High Refractive Index Contrast2016In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 28, no 17, p. 1862-1865Article in journal (Refereed)
    Abstract [en]

    Integrated polymer photonics is efficient and cheap solution for many applications, such as optical communications and sensors. Waveguides are basic elements of photonic integrated circuits, and their performance directly influences optical circuit efficiency. However, it is a challenge to develop small footprint polymer waveguides with reasonable losses due to low refractive index comparing to cladding. In this letter, we present free-standing SU-8 waveguides with high refractive index contrast. SiO2 cladding is selectively etched, leaving only air as a cladding material; waveguides are supported by thin pillars. Removal of SiO2 cladding eliminates light leakage to substrate and provides better light confinement. Straight and bending SU-8 waveguides are numerically simulated and experimentally verified lambda = 1550 nm. We also report reduced propagation and bending losses in discussed waveguides.

  • 8.
    Marinins, Aleksandrs
    et al.
    KTH, School of Engineering Sciences (SCI).
    Ozolins, O.
    Pang, X.
    Udalcovs, A.
    Navarro, J. R.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI).
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI).
    Thermal Reflow Engineered Cylindrical Polymer Waveguides for Optical Interconnects2018In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 30, no 5, p. 447-450Article in journal (Refereed)
    Abstract [en]

    Integrated polymer photonics brings low cost and high fabrication flexibility to optoelectronic industry. However, this platform needs to overcome several issues to be effective enough for practical applications. In this letter, we experimentally demonstrate a decrease of propagation losses and polarization sensitivity of polymer waveguide-based devices as a result of thermal treatment. Heating of poly(methyl methacrylate) strip optical waveguides above the glass transition temperature initiates a waveguide surface reflow due to a decrease of the polymer viscosity and surface tension energy. This results in a decrease of surface roughness and shape change from rectangular to cylindrical. Thus, scattering losses and polarization sensitivity are minimized. 

  • 9.
    Marinins, Aleksandrs
    et al.
    KTH.
    Ozolins, Oskars
    Pang, Xiaodan
    RISE ACREO AB.
    Udalcovs, Aleksejs
    Navarro, Jaime Rodrigo
    Kakkar, Aditya
    KTH.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Cylindrical Polymer Optical Waveguides with Polarization Independent Performance2017In: CLEO: Science and Innovations, OSA Publishing , 2017Conference paper (Refereed)
    Abstract [en]

    Heating of poly(methyl methacrylate) ridge optical waveguides slightly above glass transition temperature minimizes surface roughness and provides cylindrical shape. We experimentally demonstrate propagation loss decrease and polarization insensitivity as a result of waveguide thermal treatment.

  • 10.
    Marinins, Aleksandrs
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Udalcovs, A.
    Ozolins, O.
    Pang, X.
    Veinot, J.
    Jacobsen, G.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Linnros, Jan
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    All-optical intensity modulation in polymer waveguides doped with si quantum dots2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We demonstrate all-optical intensity modulation in integrated PMMA optical waveguides doped with silicon quantum dots. The 1550 nm probe signal is absorbed by free carriers excited in silicon quantum dots with 405 nm pump light.

  • 11.
    Marinins, Aleksandrs
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Zhenyu
    Chen, Hongzheng
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Veinot, Jonathan G. C.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Sychugov, Ilya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Photostable Polymer/Si Nanocrystal Bulk Hybrids with Tunable Photoluminescence2016In: ACS Photonics, E-ISSN 2330-4022, Vol. 3, no 9, p. 1575-1580Article in journal (Refereed)
    Abstract [en]

    Solid polymer/Si nanocrystal bulk nanocomposites were fabricated from solutions of alkene- and hydride-terminated silicon nanocrystals (NCs) in toluene. The photoluminescence peak position of hydride-terminated SiNCs before polymerization was tuned by photoassisted hydrofluoric acid etching. Optical properties of obtained PMMA/NC hybrids, such as quantum yield, luminescence lifetime, and dispersion factor, were evaluated over time. Photostability of these transparent bulk polymer/SiNC hybrids over months was confirmed. The emission covers the visible to near-infrared range with a quantum yield of similar to 30-40% for yellow-red nanocomposites.

  • 12.
    Popov, Sergei
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Marinins, Aleksandrs
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Yan, Max
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Vasileva, Elena
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Udalcovs, Aleksejs
    RISE Acreo AB, Stockholm, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Stockholm, Sweden..
    Polymer photonics and nano-materials for optical communication2018In: 2018 17TH WORKSHOP ON INFORMATION OPTICS (WIO), Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    Polymer materials offer process compatibility, design flexibility, and low cost technology as a multi-functional platform for optical communication and photonics applications. Design and thermal reflowing technology of low loss polymer waveguides, as well as demonstration of transparent wood laser are presented in this paper.

  • 13.
    Vasileva, Elena
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Fei, Ye
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Etcheverry, Sebastián
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Popov, Sergei Yu
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Optimization of optical gain in composite materials containing Rh6G dye and gold nanoparticles2015In: Asia Communications and Photonics Conference, ACPC 2015, 2015Conference paper (Refereed)
    Abstract [en]

    The existence of metal nanoparticles in a dye material can lead not only to quenching or enhancement of dye luminescence, or random lasing action, but also to the change of the fundamental material characteristic as optical gain. © 2015 OSA.

  • 14.
    Zhao, Yichen
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Lobov, Gleb
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Sugunan, Abhilash
    Chemistry, Materials and Surfaces Unit, SP Technical Research Institute of Sweden.
    Karlsson, Mikael
    Department of Sensor system, Acreo Swedish ICT AB.
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Delekta, Szymon Sollami
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Wang, Qin
    Department of Sensor system, Acreo Swedish ICT AB.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Electrical Field Induced Alignment of P3HT NanofibersManuscript (preprint) (Other academic)
    Abstract [en]

    Abstract: Poly 3-hexylthiophene (P3HT) is one of the most studied conjugated polymers for organic solar cell applications due to its light weight, flexible processing methods and low cost fabrication. However, the hole mobility in P3HT is still relatively low compared to that of the inorganic semiconductors, which is one of the main challenges to achieve better performance of organic solar cells. The P3HT nanofibers with aligned by inducing an external electric field have been studied to improve the hole mobility in P3HT nanofibers. Here we present an AC electric field (1.3 V/µm, 50 Hz) induced alignment of P3HT nanofibers with two different lengths. The optical absorption spectra of aligned nanofibers were measured under different polarizations of incident light. The longer nanofibers showed higher dichroic raitos than that of shorter nanofibers, revealing a better alignment pattern. The photoconductivity of non-aligned and aligned P3HT nanofibers were measured and compared, where the aligned P3HT nanofibers showed a ~270% higher dark current than that of non-aligned sample. Moreover, the current measured under the illumination showed ~110% enhancement in the aligned P3HT nanofibers while only ~70% enhancement was obseved in non-aligned nanofibers, revealing that the alignment process have the potential to improve the mobility for optoelectronic applications. 

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf