kth.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ansari, Farhan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Sjöstedt, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Biocomposites based on nanostructured chemical wood pulp fibres in epoxy matrixManuscript (preprint) (Other academic)
  • 2.
    Ansari, Farhan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Sjöstedt, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hierarchical wood cellulose fiber/epoxy biocomposites: Materials design of fiber porosity and nanostructure2015In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 74, p. 60-68Article in journal (Refereed)
    Abstract [en]

    Delignified chemical wood pulp fibers can be designed to have a controlled structure of cellulose fibril aggregates to serve as porous templates in biocomposites with unique properties. The potential of these fibers as reinforcement for an epoxy matrix (EP) was investigated in this work. Networks of porous wood fibers were impregnated with monomeric epoxy and cured. Microscopy images from ultramicrotomed cross sections and tensile fractured surfaces were used to study the distribution of matrix inside and around the fibers - at two different length scales. Mechanical characterization at different relative humidity showed much improved mechanical properties of biocomposites based on epoxy-impregnated fibers and they were rather insensitive to surrounding humidity. Furthermore, the mechanical properties of cellulose-fiber biocomposites were compared with those of cellulose-nanofibril (CNF) composites; strong similarities were found between the two materials. The reasons for this, some limitations and the role of specific surface area of the fiber are discussed.

  • 3.
    Larsson, Per Tomas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Svensson, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls2013In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 20, no 2, p. 623-631Article in journal (Refereed)
    Abstract [en]

    A new, robust method for measuring the average pore size of water-swollen, cellulose I rich fibres is presented. This method is based on the results of solid-state NMR, which measures the specific surface area (area/solids mass) of water-swollen samples, and of the fibre saturation point (FSP) method, which measures the pore volume (water mass/solids mass) of water-swollen samples. These results are suitable to combine since they are both recorded on water-swollen fibres in excess water, and neither requires the assumption of any particular pore geometry. The new method was used for three model samples and reasonable average pore size measurements were obtained for all of them. The structural characterization of water-swollen samples was compared with the dry structure of fibres as revealed using BET nitrogen gas adsorption after a liquid exchange procedure and careful drying. It was concluded that the structure of the water-swollen fibres sets an upper limit on what is obtainable in the dry state.

  • 4.
    Sjöstedt, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The overall objective of the work in this thesis is to better utilize the non-collapsed structure of the delignified wood-fibre cell wall in the preparation of new types of materials.

    In order to utilize the fibres in new materials, it is crucial to have a well-defined starting material and to know how it reacts to certain treatments of the fibres. A new robust method for measuring the average pore size of water-swollen fibres-rich in cellulose is presented. This method is based on solid-state NMR, which measures the specific surface area [m2/g] of water-swollen samples, and the fibre saturation point (FSP) method, which measures the pore volume [water mass/solid mass] of a water swollen sample. These results can be combined since they are both recorded on water-swollen fibres in the presence of excess water and neither is based on any assumption of any particular pore geometry. Delignifed wood fibres (chemical pulp fibres) have an open fibrillar structure, with approximately 20 nm thick fibril aggregates arranged in a porous structure with a specific surface area of 150 m2/g. This open structure was preserved in the dry state by a liquid-exchange procedure followed by careful drying in argon gas. The dry structure had a specific surface area of 130 m2/g, which implies that the porous structure was preserved in the dry state.

    New fibre-basedmaterials were prepared by two different strategies.

    The first strategy was to utilize the open nanoporous fibre wall structure for the preparation of nanocomposites. The nanoporous structure was used as a scaffold, allowing monomers to impregnate the structure and to be in-situ polymerized inside the fibre wall pores. Poly(methyl methacrylate) (PMMA) and poly(butylacrylate) (PBA) were synthesized inside the dry nanoporous fibre wall structure, and an epoxy resin was cured in never-dried fibres oxidized to different degrees by TEMPO. The composites prepared thus have a mixture of fibril aggregates and a polymer matrix inside the fibre wall. The structure and performance of the composite materials were evaluated both by high resolution microscopy and mechanically. Characterization of the composite showed that the polymer matrix was successfully formed inside the fibre wall pores. The structural changes caused by oxidation were preserved and utilized for the composite with the epoxy matrix. By tailoring the supramolecular structure of fibres in their water-swollen state, it was hence indeed possible to control the mechanical performance of the nanostructured fibre composites.

    The secondbstrategy used to prepare composites was to improve the thermoplastic properties of paper by adding polylactic acid (PLA) latex during the preparation of fibrebsheets. By the addition of PLA-latex, it was possible to form double curved sheets with a nominal strain at break of 21%.

    Download full text (pdf)
    Anna Sjöstedt PhD Thesis
  • 5.
    Sjöstedt, Anna
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Structural changes during swelling of highly charged cellulose fibres2014In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, p. 45-CELL-Article in journal (Other academic)
  • 6.
    Sjöstedt, Anna
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Structural changes during swelling of highly charged cellulose fibres2015In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 22, no 5, p. 2943-2953Article in journal (Refereed)
    Abstract [en]

    Structural changes of fibrils and fibril aggregates in the fibre wall were studied after oxidation of the cellulose by 2,2,6,6-tetramethyl-1-piperidinyloxy to high charge densities (highest charge density: 1300 mu eq/g). The increase in pore volume was measured by mini-WRV at two different pH levels, and the supramolecular structure in the fibre wall in terms of aggregate size, specific surface area and average pore size was measured by solid state NMR, DVS desorption and BET N-2 gas adsorption. A structural change in the arrangement of the fibrils inside the fibril aggregates was observed although the oxidation did not lead to a complete liberation of individual fibrils, i.e. they still exist as an aggregated structure after oxidation. Theoretical estimates suggest that the electrostatic repulsion energy connected with the increase in surface charge of the fibrils can be sufficient to gradually separate the fibrils enough to expose all fibril surfaces to oxidation chemicals.

  • 7.
    Svensson, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanocomposites made from nanoporous cellulose fibre2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis explores how to use the dry nanoporous structure of cellulosic fibres in new types of composite materials. A large effort was also given on how to correctly characterize the structure of fibres where the wet structure has been preserved also in the dry state.

    Delignified wood fibres have an open fibrillar structure in their water-swollen state. In the present work, this open fibrillar structure was preserved in the dry state by performing a liquid exchange procedure and the samples were thereafter carefully dried with Ar(g). The samples of never-dried TEMPO-oxidized dissolving pulp had a specific surface area of 130 m2/g in the dry state, as measured using the Brunauer, Emmet, and Teller (BET) Nitrogen gas adsorption method. This open structure was also revealed using field emission scanning electron microscopy (FE-SEM).

    The water-swollen and dry open structures were thoroughly characterized for various pulps. A new method for determining the pore size of water-swollen delignified cellulosic fibres is presented. By combining the results from solid state nuclear magnetic resonance NMR, measuring the specific surface area [m2/g] in the water-swollen state, with fibre saturation point (FSP), measuring the pore volume of fibres in water-swollen state [mass water/mass fibre], the average pore size can be determined without the need of assuming a certain pore geometry.

    The dry nanoporous structure was then used as a scaffold for in-situ polymerization, to demonstrate how the properties of the fibrils in the fibre wall can be exploited without the need to disintegrate the fibre wall. Both poly(methylmethacrylate) (PMMA) and poly(butylacrylate) (PBA) were successfully used as the polymeric matrix, and both nanocomposites (i.e., fibre/PMMA and fibre/PBA) had a fibre content of approximately 20 w%. The structure of the composites was characterized using SEM and Atomic Force Microscopy (AFM) operated in the phase imaging mode. The AFM results indicate that the cellulose aggregates and polymeric matrix were successfully mixed on a nanoscale, creating a nanocomposite of interpenetrating polymer molecules and cellulose fibrils, rather than a microcomposite, when using microscopic cellulose fibres. The water absorption capacity of the nanocomposites was reduced significantly, indicating that almost all nanopores in the fibre wall were successfully filled with matrix polymer. The mechanical properties were investigated, showing the importance of nanosized reinforcement compared to fibres of micrometer size.

    Download full text (pdf)
    Nanocomposites made from nanoporous cellulose fibres
  • 8.
    Svensson, Anna
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Salazar-Alvarez, German
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Preparation of dry ultra-porous cellulosic fibres: Characterization and possible initial uses2013In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 92, no 1, p. 775-783Article in journal (Refereed)
    Abstract [en]

    Dry ultra-porous cellulose fibres were obtained using a liquid exchange procedure in which water was replaced in the following order: water, methanol, acetone, and finally pentane: thereafter, the fibres were dried with Ar(g). The dry samples (of TEMPO-oxidized dissolving pulp) had a specific surface area of 130 m(2) g(-1) as measured using BET nitrogen gas adsorption. The open structure in the dry state was also revealed using field emission scanning electron microscopy. This dry open structure was used as a scaffold for in situ polymerization. Both poly(methyl methacrylate) and poly(butylacrylate) were successfully used as matrix polymers for the composite material (fibre/polymer), comprising approximately 20 wt% fibres. Atomic force microscopy phase imaging indicated a nanoscale mixing of the matrix polymer and the cellulose fibril aggregates and this was also supported by mechanical testing of the prepared composite where the open fibre structure produced superior composites. The fibre/polymer composite had a significantly reduced water absorption capacity also indicating an efficient filling of the fibre structure with the matrix polymer.

  • 9.
    Svensson, Anna
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Lindström, Tom
    Ankerfors, Mikael
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
    3D-shapeable thermoplastic paper materials2013In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 28, no 4, p. 602-610Article in journal (Refereed)
    Abstract [en]

    The purpose of this work was to investigate to what extent it is possible to improve the thermoplastic properties of paper materials so that 3D-shapeable paper products can be manufactured. For that purpose, the addition of various chemical adjuvants, known to improve both tensile strength index and strain at break, was investigated. Adding polylactide latex was found to significantly improve both the tensile strength properties and strain at break of paper materials. To enhance their strainability, the paper sheets were cured at an elevated temperature of 150 degrees C. The improved strainability after curing is hypothesized to relate to the spreading of the polylactide latex (minimum film-forming temperature of 90 degrees C) on the fibre surfaces, improving the relative bonded area. Both the tensile strength index and strain at break improved significantly with no densification of the paper sheets. A second aim was to make double-curved board structures in a hydroforming equipment, using the sheets treated with polylactide latex under various conditions. Double-curved sheets with a nominal strain at break of over 20% could be formed by adding 20% polylactide latex. Hydroforming had to be done at temperatures exceeding the minimum film-forming temperature of the polylactide latex to significantly improve the strain at break during the forming operation.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf