Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Barman, Emelie
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    On the stability of a Blasius boundary layer subject to localized suction2017Report (Other academic)
    Abstract [en]

    In this work the problem of premature transition in boundary layers due to localized suction is revisited. A thorough study involving nonlinear direct numerical simulations, a three-dimensional linear stability analysis, a sensitivity study and a Koopman analysis is presented. The ensemble of these different techniques enables the origins of oversuction to be studied in great detail and provides new insight into the transition process of the flow. The configuration considered consists of an infinite row of widely separated suction pipes that are mounted to the plate at right angles. For the parameter range investigated, the flow inside the pipe is seen to bifurcate at a lower suction ratio than the boundary layer and thus act as an oscillator that forces the external flow over the plate. At low levels of suction, this forcing is not enough to cause transition in the boundary layer, but as the suction level is increased beyond criticality, modes originating from the pipe and extending into the boundary layer are seen to destabilize as well. These modes enable the perturbations forced in the pipe to also amplify in the boundary layer, which leads to a rapid breakdown to turbulence in the wake of the suction hole.

  • 2.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Barman, Emelie
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Peplinski, Adam
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. Swedish Defence Research Agency, FOI.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    On the stability of flat plate boundary layers subject to localized suction2015Report (Other academic)
    Abstract [en]

    The stability of the Blasius boundary layer subject to localized suction is revisited. Using tools of global stability analysis, the leading direct and adjoint eigenpairs are determined, and novel insight into the sensitivity and receptivity of the flow is obtained. The problem is addressed through high-order spectral element simulations, which enables the inclusion of a suction pipe into the domain. Due to this, a detailed investigation of the connection between the pipe flow and the boundary layer flow is possible. For all cases investigated, the former always turns out to transition for a lower Reynolds number and suction rate than the latter, and the transition scenario is found to be due to a global instability originating inside a separation bubble at the pipe inlet. Identification of such regions, provides information that is valuable in further development of algorithms for laminar flow control.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf