Endre søk
Begrens søket
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abdelaziz, Omar Y.
    et al.
    Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
    Vives, Mariona Battestini
    Division of Chemical Engineering, Department of Process and Life Science Engineering, Lund University, SE-221 00 Lund, Sweden.
    Mankar, Smita V.
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
    Warlin, Niklas
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; Department of Chemistry, Stanford University, Stanford, California 94306, United States.
    Nguyen, Tran Tam
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
    Zhang, Baozhong
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
    Hulteberg, Christian P.
    Division of Chemical Engineering, Department of Process and Life Science Engineering, Lund University, SE-221 00 Lund, Sweden.
    khataee, Amirreza
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Recent strides toward transforming lignin into plastics and aqueous electrolytes for flow batteries2024Inngår i: iScience, E-ISSN 2589-0042, Vol. 27, nr 4, artikkel-id 109418Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Lignin is an abundant polyaromatic polymer with a wide range of potential future uses. However, the conversion of lignin into valuable products comes at a cost, and medium- to high-value applications are thus appropriate. Two examples of these are polymers (e.g., as fibers, plasticizers, or additives) and flow batteries (e.g., as redox species). Both of these areas would benefit from lignin-derived molecules with potentially low molecular weight and high (electro)chemical functionality. A promising route to obtain these molecules is oxidative lignin depolymerization, as it enables the formation of targeted compounds with multiple functionalities. An application with high potential in the production of plastics is the synthesis of new sustainable polymers. Employing organic molecules, such as quinones and heterocycles, would constitute an important step toward the sustainability of aqueous flow batteries, and lignin and its derivatives are emerging as redox species, mainly due to their low cost and renewability.

  • 2.
    Khataee, Amirreza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Nederstedt, Hannes
    Lund Univ, Dept Chem, POB 124, SE-22100 Lund, Sweden..
    Jannasch, Patric
    Lund Univ, Dept Chem, POB 124, SE-22100 Lund, Sweden..
    Lindström, Rakel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Poly(arylene alkylene)s functionalized with perfluorosulfonic acid groups as proton exchange membranes for vanadium redox flow batteries2023Inngår i: Journal of Membrane Science, ISSN 0376-7388, E-ISSN 1873-3123, Vol. 671, artikkel-id 121390Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    With the aim to develop vanadium redox flow battery (VRFB) membranes beyond state of the art, we have in the present work functionalized poly(p-terphenylene)s with highly acidic perfluorosulfonic groups and investigated their performance as proton exchange membranes (PEMs). Consequently, two poly(p-terphenylene alkylene)s tethered with perfluoroalkylsulfonic acid and perfluorophenylsulfonic acid, respectively, were synthesized through superacid-mediated polyhydroxyalkylations and cast into PEMs. Compared with Nafion 212, the PEM carrying perfluorophenylsulfonic acid groups (PTPF-Phenyl-SA) was found to exhibit higher ionic conductivity and eight times lower vanadium (IV) permeation rate. The latter explains the longer self-discharge duration of the VRFB based on the PTPF-Phenyl-SA. In addition, the VRFB assembled with the PTPF-Phenyl-SA PEM exhibited a high average coulombic efficiency of 99.6% for over 100 cycles with a capacity fade of 0.24% per cycle, which was 50% lower than when Nafion 212 was used. More importantly, excellent capacity retention was achieved through electrochemical rate performance experiments at different current densities.

  • 3.
    Ansarian, Zahra
    et al.
    Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
    Khataee, Alireza
    Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
    Orooji, Yasin
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
    khataee, Amirreza
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Arefi-Oskoui, Samira
    Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran.
    Ghasali, Ehsan
    College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
    Titanium germanium carbide MAX phase electrocatalysts for supercapacitors and alkaline water electrolysis processes2023Inngår i: Materials Today Chemistry, E-ISSN 2468-5194, Vol. 33, artikkel-id 101714Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Developing electrochemically active, stable, and low-cost electrocatalysts for electrochemical devices is a significant breakthrough. Accordingly, MAX phases, emerging three-dimensional materials, are considered outstanding candidates due to their excellent electrocatalytic and electrochemical properties. Herein, the titanium germanium carbide (Ti3GeC2) MAX phase with a layered structure manufactured through reactive sintering was regarded as the electrocatalyst. In the current work, the electrocatalytic activity of the Ti3GeC2 was investigated for electrochemical devices. It was observed that adding activated carbon to the Ti3GeC2 enhances the conductivity and active area, leading to an excellent specific capacitance (349 Fg-1) for supercapacitors. Also, the capacitance of Ti3GeC2 was increased by increasing the number of cyclic voltammetry cycles. In another application, Ti3GeC2 showed substantial activity for hydrogen and oxygen evolution reactions in alkaline media. As a result, the alkaline water electrolysis system using Ti3GeC2 showed the highest current density of 10 mA cm−2 at 1.36 V and outstanding stability over 400 cycles.

  • 4.
    Salmeron-Sanchez, Ivan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi. Universidad Autónoma de Madrid (UAM), Departamento de Química Física Aplicada, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain, C/Francisco Tomás y Valiente 7.
    Mansouri Bakvand, Pegah
    Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, P.O. Box 124.
    Shirole, Anuja
    Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, P.O. Box 124.
    Ramón Avilés-Moreno, Juan
    Universidad Autónoma de Madrid (UAM), Departamento de Química Física Aplicada, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain, C/Francisco Tomás y Valiente 7.
    Ocón, Pilar
    Universidad Autónoma de Madrid (UAM), Departamento de Química Física Aplicada, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain, C/Francisco Tomás y Valiente 7.
    Jannasch, Patric
    Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, P.O. Box 124.
    Wreland Lindström, Rakel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Khataee, Amirreza
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Zwitterionic poly(terphenylene piperidinium) membranes for vanadium redox flow batteries2023Inngår i: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 474, artikkel-id 145879Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Over recent years, non-fluorinated ion exchange membranes based on poly(terphenylene) backbones carrying different functional groups have shown potential application for vanadium redox flow batteries (VRFBs). Generally, the ion exchange membrane in VRFBs is a critical component in terms of the output power, long-term stability and cost. Yet, the shortcomings of commercial membranes (e.g., Nafion) have become a substantial barrier to further commercializing VRFBs. After successfully fabricating and testing poly(terphenylene)-based membranes carrying piperidinium and sulfonic acid groups, respectively, for VRFBs, we have in the present work combined both these ionic groups in a single zwitterionic membrane. A series of poly(terphenylene)-based membranes containing zwitterionic (sulfoalkylated piperidinium) and cationic (piperidinium) groups in different ratios (40–60%) were synthesized and investigated. The VRFB using the zwitterionic membranes showed competitive performance compared to Nafion 212 regarding ionic conductivity, capacity retention, and chemical stability. In addition, it was shown that the VRFB performance was improved by increasing the content of zwitterionic groups within the membrane. A self-discharge time of more than 800 h and 78.7% average capacity retention for 500 VRFB cycles were achieved using a membrane with an optimized ratio (60% zwitterionic and 40% piperidinium groups). Furthermore, the chemical stability was promising, as there was no change in the chemical structure after 500 cycles. Our results represent a critical step for developing novel and competitive ion exchange membranes as an excellent alternative to the Nafion benchmark.

  • 5.
    khataee, Amirreza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi. Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Shirole, Anuja
    Department of Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
    Jannasch, Patric
    Department of Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
    Krüger, Andries
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi. Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Cornell, Ann M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Anion exchange membrane water electrolysis using Aemion™ membranes and nickel electrodes2022Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, nr 30, s. 16061-16070Artikkel i tidsskrift (Fagfellevurdert)
    Fulltekst (pdf)
    fulltext
    Fulltekst (pdf)
    fulltext
  • 6.
    Lallo, Elias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    khataee, Amirreza
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Wreland Lindström, Rakel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Vanadium Redox Flow Battery Using Aemion((TM)) Anion Exchange Membranes2022Inngår i: Processes, ISSN 2227-9717, Vol. 10, nr 2, artikkel-id 270Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The vanadium redox flow battery (VRFB) is a promising and commercially available technology that poses advantageous features for stationary energy storage. A key component of the VRFB in terms of cost and system efficiency is the membrane. In recent years, anion exchange membranes (AEMs) have gained interest in VRFB research as they in general exhibit lower vanadium crossover due to a more substantial Donnan exclusion effect. In this study, a low-resistance flow cell was developed and the electrochemical performance of Aemion (TM) anion exchange membranes AF1-HNN5-50-X, AF1-HNN8-50-X and AF1-ENN8-50-X were compared against commonly used cation exchange membranes, Nafion(R) 211 and 212. The VRFB using AF1-ENN8-50-X exhibited superior performance versus Nafion(R) 212 regarding cycling efficiency and rate performance. However, relatively high and comparable capacity losses were observed using both membranes. NMR analysis showed no sign of chemical degradation for AF1-ENN8-50-X by immersion in VO2+ solution for 800 h. Although Aemion (TM) AEMs showed good chemical and electrochemical performance, considerable electrolyte crossover was observed due to high water uptake.

  • 7.
    Khataee, Amirreza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Pan, Dong
    Lund University.
    S. Olsson, Joel
    Lund University.
    Jannasch, Patric
    Lund University.
    Lindström, Rakel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Asymmetric cycling of vanadium redox flow batteries with a poly(arylene piperidinium)-based anion exchange membrane2021Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 483, artikkel-id 229202Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The potential application of a 50 μm thick anion exchange membrane prepared based on poly(terphenyl piperidinium-co-trifluoroacetophenone) (PTPT) is investigated for vanadium redox flow batteries (VRFBs). The PTPT exhibits a considerably lower vanadium permeation than Nafion 212. Therefore, the self-discharge duration of the VRFB based on PTPT is much longer than the VRFB based on Nafion 212. Besides, PTPT shows oxidative stability almost as good as Nafion 212 during immersion in an ex-situ immersion test for more than 400 h. Comparing the VRFB performance when symmetric and asymmetric electrolyte volumes are used yields interesting results. The results show that asymmetric cycling is more effective and efficient for the VRFB assembled with PTPT than Nafion 212 as the capacity fade of 0.03% cycle−1, and the highest coulombic efficiency of 98.8% is attained. Furthermore, the color change of the membrane during cycling can be reversed using a straightforward post-treatment method.

    Fulltekst (pdf)
    VRFB
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf