Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chen, Tianyang
    et al.
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Banda, Harish
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Yang, Luming
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Li, Jian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
    Zhang, Yugang
    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
    Parenti, Riccardo
    Automobili Lamborghini S.p.A., 40019 Sant'Agata Bolognese, Italy.
    Dincă, Mircea
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics2023Inngår i: Joule, E-ISSN 2542-4351, Vol. 7, nr 5, s. 986-1002Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Designing materials for electrochemical energy storage with short charging times and high charge capacities is a longstanding challenge. The fundamental difficulty lies in incorporating a high density of redox couples into a stable material that can efficiently conduct both ions and electrons. We report all-organic, fused aromatic materials that store up to 310 mAh g−1 and charge in as little as 33 s. This performance stems from abundant quinone/imine functionalities that decorate an extended aromatic backbone, act as redox-active sites, engage in hydrogen bonding, and enable a delocalized high-rate energy storage with stability upon cycling. The extended conjugation and hydrogen-bonding-assisted bulk charge storage contrast with the surface-confined or hydration-dependent behavior of traditional inorganic electrodes.

  • 2. Li, Fusheng
    et al.
    Yang, Hao
    Li, Wenlong
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering2018Inngår i: Joule, E-ISSN 2542-4351, Vol. 2, nr 1, s. 36-60Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Research on the storage of solar energy in terms of hydrogen or carbon-based fuels by using sunlight to split water or to reduce CO2, respectively, has gained significant attention in recent years. Among reported water-splitting systems, one approach has focused on hybrid systems with molecular catalysts or molecular light-harvesting systems that are combined with nanostructured materials. In this perspective we summarize recent developments in operation and fabrication strategies for various water-splitting devices constructed from electrodes (electrochemical cells) or photoelectrodes (photoelectrochemical cells) using molecular engineering. We also provide insights into the factors that influence device efficiency and stability, and provide guidelines for future fabrication strategies for more advanced devices.

  • 3.
    Zhang, Biaobiao
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Fan, Lizhou
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Ambre, Ram B.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Liu, Tianqi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Meng, Qijun
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Timmer, Brian J. J.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Sun, Licheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Advancing Proton Exchange Membrane Electrolyzers with Molecular Catalysts2020Inngår i: Joule, E-ISSN 2542-4351, Vol. 4, nr 7, s. 1408-1444Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Molecular catalysts possess numerous advantages over conventional heterogeneous catalysts in precise structure regulation, in-depth mechanism understanding, and efficient metal utilization. Various molecular catalysts have been reported that efficiently catalyze reactions involved in artificial photosynthesis, however, these catalysts have been rarely considered in view of practical applications. With this review, firstly we demonstrate in the introduction that molecular catalysts can bring new opportunities to proton exchange membrane (PEM) electrolyzers. In the following parts, we provide an overview of molecular catalyst modified carbon materials developed for electrochemical water oxidation, proton reduction, and CO2 reduction reactions. These materials and the involved immobilization strategies as well as characterization techniques may be directly employed in the investigations of application of molecular catalysts in PEM electrolyzers. The future scientific perspectives and challenges to advance this promising, yet underdeveloped technology for solar fuel production, integrating PEM electrolyzer with molecular-level catalysis, are discussed in the conclusions.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf