Endre søk
Begrens søket
1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chaffey, Geraint
    et al.
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Jahn, Ilka
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Loenders, Rick
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Leterme, Willem
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Dejene, Firew Z.
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Wang, Mian
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Norrga, Staffan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Van Hertem, Dirk
    ELECTA, KU Leuven, Belgium and EnergyVille, Genk, Belgium.
    Requirements for functional testing of HVDC protection IEDs2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Development of Intelligent Electronic Devices (IED) for HVDC protection is underway, driven in part by the prospective demands of future multiterminal HVDC systems. There is, however, no consensus on how to test the functionality of an HVDC protection IED. Successful operation of a future multivendor HVDC protection system requires functional specifications and harmonised test procedures for protection system components, including the protection IED. This paper presents an introduction to functional testing methods for HVDC protection IEDs. Evaluating the protection algorithm characteristic using synthetic waveforms is first performed, i.e. ’functional type testing’. Given that test procedures are in part dependent on the protection algorithm, tests are developed and presented for several algorithms. The behaviour of the IED in a power system simulation is then examined during generalised yet representative fault transients, i.e. equivalent to ’dynamic validation type testing’ of AC protection algorithms. The combination of functional and dynamic validation type testing allows the generalised functionality of the IED to be evaluated - testing the algorithm, hardware and software implementation, and overall performance. To provide examples of test procedures, an open-source HVDC IED prototype is tested in a hardware-in-the-loop configuration using a real-time simulator. The operation and accuracy of the protection characteristics are first examined, before the IED performance under representative waveforms is determined. Through tests of several non-unit line protection algorithms, it is shown that, depending on the algorithm applied, the IED is dependable for simulated faults within the protection zone, and secure during external faults. Moreover,the test configurations and procedures required to evaluate the functionality and the criteria for success are developed.

  • 2.
    Wang, Mian
    et al.
    KU Leuven/EnergyVille, Belgium.
    Jovcic, Dragan
    Aberdeen Institute of Energy, UK.
    Leterme, Willem
    KU Leuven/EnergyVille, Belgium.
    van Hertem, Dirk
    KU Leuven/EnergyVille, Belgium.
    Zaja, Mario
    Aberdeen Institute of Energy, UK.
    Jahn, Ilka
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Pre-standardisation of Interfaces between DC Circuit Breaker and Intelligent Electronic Device to Enable Multivendor Interoperability2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    DC circuit breakers (DCCBs) are one of the key components to facilitate large meshed HVDC grids. Driven by the needs for achieving high speed, low loss and low cost, various DCCB technologies have been proposed for HVDC applications. Unlike AC circuit breakers (ACCBs), some DCCBs provide a variety of functions, such as proactive opening or fault current limiting (FCL), mainly attributed to the high controllability of the power electronic switches used in such DCCBs. To enable these functions, the intelligent electronic devices (IEDs) are expected to provide signals steering these functions in addition to a trip command. Interoperability between IEDs and DCCBs from different vendors is considered feasible, but expected to be more complex than their AC counterparts, due to the different functions provided by various DCCB technologies. It is therefore crucial to understand which of the functions are essential to fulfil the requirements imposed in HVDC grid protection, and to standardise the interfaces between the IEDs and DCCBs to achieve multivendor interoperability between IEDs and DCCBs provided by different vendors. This paper first classifies the DCCB functions into minimally required and auxiliary ones based on reviewing the existing literature. Then, standardised interfaces between the IEDs and DCCBs are proposed to enable both types of DCCB functions. An example of such IED is implemented in PSCAD/EMTDC to demonstrate that the proposed interfaces are adequate to enable both minimally required and auxiliary functions using a four-terminal test system. Auxiliary functions of hybrid DCCBs, such as proactive opening, fault current limiting, fast reclosing and reopening, breaker failure internal detection and repeated O-C-O operation are demonstrated by simulations.

1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf