Endre søk
Begrens søket
123 1 - 50 of 107
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cellulose nanocomposites - Controlling dispersion and material properties through nanocellulose surface modification2015Inngår i: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The use of cellulosic nanofibers as reinforcement in polymer composites offers great advantages over their petroleum counterparts. Apart from being strong, stiff and low density; they are obtained from naturally occurring resources and as such are favorable from an environmental point of view. A major problem while studying nanomaterials is their tendency to agglomerate, thus leading to inhomogeneous distribution within the polymer matrix. This often results in stress concentrations in the matrix rich regions when the material is subjected to load and therefore, limits the potential application of these materials. A common approach to circumvent this is by surface modification, which facilitates the dispersion in non-polar matrices. An environmental friendly approach, inspired by clay chemistry, was used to functionalize the CNC surface. It was shown that the CNC could be modified in a rather convenient way to attach a variety of functional groups on the surface. Primarily, the problem of cellulose nanocrystal (CNC) distribution in a hydrophobic polymer matrix is investigated. Composites prepared from modified CNC were studied and compared with unmodified CNC. The distribution of the CNC is carefully monitored at different stages via UV-Vis spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the resulting materials were characterized by dynamic mechanical as well as uniaxial tensile tests. It was shown that a homogeneous distribution of the CNC exposes a tremendous amount of surface area to interact with the matrix. In such a case, the stress transfer is much more efficient and perhaps, the matrix behavior is modified, which leads to significant improvements in the mechanical properties.

  • 2.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lars, Berglund
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) matrix2015Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, nr 12, s. 3916-3924Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, the problem to disperse cellulose nanocrystals (CNC) in hydrophobic polymer matrices has been addressed through application of an environmentally friendly chemical modification approach inspired by clay chemistry. The objective is to compare the effects of unmodified CNC and modified CNC (modCNC) reinforcement, where degree of CNC dispersion is of interest. Hydrophobic functionalization made it possible to disperse wood-based modCNC in organic solvent and cast well-dispersed nanocomposite films of poly(vinyl acetate) (PVAc) with 1-20 wt % CNC. Composite films were studied by infrared spectroscopy (FT-IR), UV-vis spectroscopy, dynamic mechanical thermal analysis (DMTA), tensile testing, and field-emission scanning electron microscopy (FE-SEM). Strongly increased mechanical properties were observed for modCNC nanocomposites. The reinforcement efficiency was much lower in unmodified CNC composites, and specific mechanisms causing the differences are discussed.

  • 3.
    Berglund, Lars
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Cellulose-based materials comprising nanofibrillated cellulose from native cellulose2011Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to cellulose-based materials comprising nanofibrillated cellulose (NFC) from native cellulose. exhibiting highly superior properties as compared to other cellulose-based materials, a method for preparing such cellulose-based material, and uses thereof are also disclosed.

  • 4.
    Berglund, Lars
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Kochumalayil, Joby Jose
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Oxygen barrier for packaging applications2011Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to composite material of xyloglucan and clay for use as a coating material. The invention also relates to a method of producing the coating.

  • 5.
    Brumer, Harry
    et al.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Rutland, Mark
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Sinnott, M. L.
    Teeri, Tuula T.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Cross-Linking Involving a Polymeric Carbohydrate Material2005Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to a method of cross-linking a polymeric carbohydrate material with a second material by means of a soluble carbohydrate polymer and a crosslinking agent. The present invention furthermore relates to the resulting cross-linked material, to uses of the cross-linked material, as well as to a kit comprising the soluble carbohydrate polymer and the cross-linking agent.

  • 6.
    Brumer, Harry
    et al.
    KTH, Tidigare Institutioner, Bioteknologi.
    Zhou, Qi
    KTH, Tidigare Institutioner, Bioteknologi.
    Baumann, Martin J.
    KTH, Tidigare Institutioner, Bioteknologi.
    Carlsson, Kjell
    KTH, Tidigare Institutioner, Bioteknologi.
    Teeri, Tuula
    KTH, Tidigare Institutioner, Bioteknologi.
    Activation of crystalline cellulose surfaces though the chemoenzymatic modification of xyloglucan2004Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 126, nr 18, s. 5715-1721Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose constitutes an important raw material for many industries. However, the superb load-bearing properties of cellulose are accompanied by poor chemical reactivity. The hydroxyl groups on cellulose surfaces can be reacted but usually not without loss of fiber integrity and strength. Here, we describe a novel chemoenzymatic approach for the efficient incorporation of chemical functionality onto cellulose surfaces. The modification is brought about by using a transglycosylating enzyme, xyloglucan endotranglycosylase, to join chemically modified xyloglucan oligosaccharides to xyloglucan, which has a naturally high affinity to cellulose. Binding of the chemically modified hemicellulose molecules can thus be used to attach a wide variety of chemical moieties without disruption of the individual fiber or fiber matrix.

  • 7. Butchosa, Nria
    et al.
    Brown, Christian
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Antimicrobial activity of biocomposites based on bacterial cellulose and chitin nanoparticles2012Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 243Artikkel i tidsskrift (Annet vitenskapelig)
  • 8.
    Butchosa, Nuria
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Brown, Christian
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Larsson, Per Tomas
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity2013Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 15, nr 12, s. 3404-3413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An environmentally friendly approach was implemented for the production of nanocomposites with bactericidal activity, using bacterial cellulose (BC) nanofibers and chitin nanocrystals (ChNCs). The antibacterial activity of ChNCs prepared by acid hydrolysis, TEMPO-mediated oxidation or partial deacetylation of a-chitin powder was assessed and the structure of the ChNC nanoparticles was characterized by X-ray diffraction, atomic force microscopy, and solid-state C-13-NMR. The partially deacetylated ChNCs (D-ChNC) showed the strongest antibacterial activity, with 99 +/- 1% inhibition of bacterial growth compared to control samples. Nanocomposites were prepared from BC nanofibers and D-ChNC by (i) in situ biosynthesis with the addition of D-ChNC nanoparticles in the culture medium of Acetobacter aceti, and (ii) post-modification by mixing D-ChNC with disintegrated BC in an aqueous suspension. The structure and mechanical properties of the BC/D-ChNC nanocomposites were characterized by Fourier transform infrared spectroscopy, elemental analysis, field-emission scanning electron microscopy, and an Instron universal testing machine. The bactericidal activity of the nanocomposites increased with the D-ChNC content, with a reduction in bacterial growth by 3.0 log units when the D-ChNC content was 50%. D-ChNC nanoparticles have great potential as substitutes for unfriendly antimicrobial compounds such as heavy metal nanoparticles and synthetic polymers to introduce antibacterial properties to cellulosic materials.

  • 9.
    Butchosa, Nuria
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Leijon, Felicia
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Enhancing toughness of cellulose nanofibrils through the expression of cellulose-binding modules in plantManuskript (preprint) (Annet vitenskapelig)
  • 10.
    Butchosa, Nuria
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Leijon, Felicia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls2019Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, nr 5, s. 3083-3094Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose-binding modules (CBMs) are non-catalytic domains typically occurring in glycoside hydrolases. Their specific interaction with diverse polysaccharides assists hydrolysis by the catalytic subunits. In this work, we have exploited the interactions between a CBM from family 3 (CBM3) and cell wall polysaccharides to alter the structure and mechanical properties of cellulose microfibrils from BY-2 tobacco cell suspension cultures. A CBM3 from Clostridium thermocellum was overexpressed in the cells using Agrobacterium-mediated transformation. Water suspensions of cellulose microfibrils were prepared by the removal of the non-cellulosic components of the primary cell walls, followed by mild disintegration using sonication. The morphology of the microfibrils was characterized by transmission electron microscopy and atomic force microscopy. These cellulose microfibrils were further hydrolyzed with 64wt% sulfuric acid to produce cellulose nanocrystals (CNCs). The average length of CNCs prepared from the CBM3-transformed cells was 201nm, higher than that from the wild-type cells (122nm). In addition, the mechanical properties and deformation mechanism of nanopapers prepared from suspensions of cellulose microfibrils were investigated. The nanopapers obtained from the CBM3-transformed cells exhibited enhanced tensile strength and work of fracture, 40% and 128% higher than those prepared from wild-type tobacco cells, respectively. [GRAPHICS] .

  • 11.
    Butchosa, Nuria
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Water redispersible nanofibrillated cellulose adsorbed with carboxymethyl cellulose2014Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, s. 130-CELL-Artikkel i tidsskrift (Annet vitenskapelig)
  • 12. Butchosa, Núria
    et al.
    Leijon, Felicia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Stronger cellulose microfibrils network structure through the expression of cellulose-binding modules in plant primary cell wallsManuskript (preprint) (Annet vitenskapelig)
  • 13.
    Butchosa, Núria
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose2014Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 21, nr 6, s. 4349-4358Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose nanofibrils (CNFs) are difficult to redisperse in water after they have been completely dried due to the irreversible agglomeration of cellulose during drying. Here, we have developed a simple process to prepare water-redispersible dried CNFs by the adsorption of small amounts of carboxymethyl cellulose (CMC) and oven drying. The adsorption of CMC onto CNFs in water suspensions at 22 and 121 °C was studied, and the adsorbed amount of CMC was measured via conductimetric titration. The water-redispersibility of dried CNFs adsorbed with different amounts of CMC was characterized by sedimentation test. Above a critical threshold of CMC adsorption, i.e. 2.3 wt%, the oven dried CNF–CMC sample was fully redispersible in water. The morphology, rheological, and mechanical properties of water-redispersed CNF–CMC samples were investigated by field emission scanning electron microscopy, viscosity measurement, and tensile test, respectively. The water-redispersed CNFs preserved the original properties of never dried CNFs. This new method will facilitate the production, transportation and storage, and large-scale industrial applications of CNFs.

  • 14. Carlsson, Daniel O.
    et al.
    Nyström, Gustav
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nyholm, Leif
    Strømme, Maria
    Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties2012Inngår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, nr 36, s. 19014-19024Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work presents conductive aerogel composites of nanofibrillated cellulose (NFC) and polypyrrole (PPy) with tunable structural and electrochemical properties. The conductive composites are prepared by chemically polymerizing pyrrole onto TEMPO-oxidized cellulose nanofibers dispersed in water and the various nanostructures are obtained employing different drying methods. Supercritical CO2 drying is shown to generate high porosity aerogel composites with the largest surface area (246 m(2) g(-1)) reported so far for a conducting polymer-paper based material, whereas composites produced by ambient drying attain high density structures with mechanical properties significantly surpassing earlier reported values for cellulose-conducting polymer composites when normalized with respect to the content of reinforcing cellulose (Young's modulus = 0.51 GPa, tensile strength = 10.93 MPa and strain to failure = 2.5%). Electrochemical measurements clearly show that differences in the porosity give rise to dramatic changes in the voltammetric and chronoamperometric behavior of the composites. This indicates that mass transport rate limitations also should be considered, in addition to the presence of a distribution of PPy redox potentials, as an explanation for the shapes of the voltammetric peaks. A specific charge capacity of similar to 220 C g(-1) is obtained for all composites in voltammetric experiments performed at a scan rate of 1 mV s(-1) and this capacity is retained also at scan rates up to 50 mV s(-1) for the high porosity composites. The composites should be applicable as electrodes in structural batteries and as membranes in ion exchange applications requiring exchange membranes of high mechanical integrity or high porosity.

  • 15.
    Cunha, Ana Gisela
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. INNVENTIA AB, Sweden.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption2014Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 21, nr 4, s. 2773-2787Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Moisture sorption decreases dimensional stability and mechanical properties of polymer matrix biocomposites based on plant fibers. Cellulose nanofiber reinforcement may offer advantages in this respect. Here, wood-based nanofibrillated cellulose (NFC) and bacterial cellulose (BC) nanopaper structures, with different specific surface area (SSA), ranging from 0.03 to 173.3 m(2)/g, were topochemically acetylated and characterized by ATR-FTIR, XRD, solid-state CP/MAS C-13-NMR and moisture sorption studies. Polymer matrix nanocomposites based on NFC were also prepared as demonstrators. The surface degree of substitution (surface-DS) of the acetylated cellulose nanofibers is a key parameter, which increased with increasing SSA. Successful topochemical acetylation was confirmed and significantly reduced the moisture sorption in nanopaper structures, especially at RH = 53 %. BC nanopaper sorbed less moisture than the NFC counterpart, and mechanisms are discussed. Topochemical NFC nanopaper acetylation can be used to prepare moisture-stable nanocellulose biocomposites.

  • 16.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Butchosa, Núria
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanopaper membranes from chitin-protein composite nanofibers: Structure and mechanical properties2014Inngår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, nr 7, s. 40121-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chitin nanofibers may be of interest as a component for nanocomposites. Composite nanofibers are therefore isolated from crab shells in order to characterize structure and analyze property potential. The mechanical properties of the porous nanopaper structures are much superior to regenerated chitin membranes. The nanofiber filtration-processing route is much more environmentally friendly than for regenerated chitin. Minerals and extractives are removed using HCl and ethanol, respectively, followed by mild NaOH treatment and mechanical homogenization to maintain chitin-protein structure in the nanofibers produced. Atomic force microscope (AFM) and scanning transmission electron microscope (STEM) reveal the structure of chitin-protein composite nanofibers. The presence of protein is confirmed by colorimetric method. Porous nanopaper membranes are prepared by simple filtration in such a way that different nanofiber volume fractions are obtained: 43%, 52%, 68%, and 78%. Moisture sorption isotherms, structural properties, and mechanical properties of membranes are measured and analyzed. The current material is environmentally friendly, the techniques employed for both individualization and membrane preparation are simple and green, and the results are of interest for development of nanomaterials and biocomposites.

  • 17.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Joby Kochumalayil, Jose
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Cervin, Nicholas
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanostructured hydrogel based on small diameter native chitin nanofibers: Preparation, structure and propertiesManuskript (preprint) (Annet vitenskapelig)
  • 18.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Nurani, Ghasem
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Brumer, Harry
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Soft, bio-inspired chitin/protein nanocomposites: mechanical behavior and interface interactions between recombinant resilin-like proteins and chitin nanofibersManuskript (preprint) (Annet vitenskapelig)
  • 19. Fonteyne, Margot
    et al.
    Correia, Ana
    De Plecker, Sofie
    Vercruysse, Jurgen
    Ilic, Ilija
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Veryaet, Chris
    Remon, Jean Paul
    Onofre, Fernanda
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    De Beer, Thomas
    Impact of microcrystalline cellulose material attributes: A case study on continuous twin screw granulation2015Inngår i: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 478, nr 2, s. 705-717Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The International Conference on Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of material attributes, manufacturing process options and process parameters. The present case study evaluates the effect of unspecified variability of raw material properties upon the quality attributes of granules; produced using a continuous from-powder-to-tablet wet granulation line (ConsiGma (TM) 25). The impact of different material attributes of six samples of microcrystalline cellulose (MCC) was investigated. During a blind study the different samples of MCC were used separately and the resulting granules were evaluated in order to identify the differences between the six samples. Variation in size distribution due to varying water binding capacity of the MCC samples was observed. The cause of this different water binding capacity was investigated and was caused by a different degree of crystallinity. Afterwards, an experimental design was conducted in order to evaluate the effect of both product and process variability upon the granule size distribution. This model was used in order to calculate the required process parameters to obtain a preset granule size distribution regardless of the type of MCC used. The difference in water binding capacity and its effect on granular properties was still present when combining the MCC grades with different binders.

  • 20. Fortunati, E.
    et al.
    Armentano, I.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Iannoni, A.
    Saino, E.
    Visai, L.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Kenny, J. M.
    Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles2012Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 87, nr 2, s. 1596-1605Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocomposite films were prepared by the addition of cellulose nanocrystals (CNCs) eventually surfactant modified (s-CNC) and silver (Ag) nanoparticles in the polylactic acid (PLA) matrix using melt extrusion followed by a film formation process. Multifunctional composite materials were investigated in terms of morphological, mechanical, thermal and antibacterial response. The nanocomposite films maintained the transparency properties of the PLA matrix. Thermal analysis showed increased values of crystallinity in the nanocomposites, more evident in the s-CNC based formulations that had the highest tensile Young modulus. The presence of surfactant favoured the dispersion of cellulose nanocrystals in the polymer matrix and the nucleation effect was remarkably enhanced. Moreover, an antibacterial activity against Staphylococcus aureus and Escherichia coil cells was detected for ternary systems, suggesting that these novel nanocomposites may offer good perspectives for food packaging applications which require an antibacterial effect constant over time. (C) 2011 Elsevier Ltd. All rights reserved.

  • 21. Fortunati, E.
    et al.
    Armentano, I.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Puglia, D.
    Terenzi, A.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Kenny, J. M.
    Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose2012Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 97, nr 10, s. 2027-2036Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(lactic acid) (PIA) based high performance nanocomposites, were prepared using an innovative combination of nanocrystalline cellulose and silver nanoparticles. Binary and ternary systems were prepared by solvent casting process and their morphological, mechanical and thermal responses were investigated. Pristine (CNC) and surfactant modified cellulose nanocrystals (s-CNC) and silver (Ag) nanoparticles were used, and the effect of cellulose crystal nano-dimension, cellulose modification, and the combination of cellulose nanostructures with silver nanoparticles, was investigated. The important industrial problem of slow crystallization of PIA was addressed by the use of cellulose nanocrystals as biobased nucleating agents and the nonisothermal cold crystallization behaviour of reinforced binary and ternary systems was studied. The presence of surfactant on the nanocrystal surface favoured the dispersion of CNC in the PLA matrix while the thermal investigations and the nonisothermal crystallization studies underlined the ability of s-CNC to act as nucleation agent in both binary and ternary nanocomposites.

  • 22. Gebauer, Denis
    et al.
    Oliynyk, Vitaliy
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Sort, Jordi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bergstrom, Lennart
    Salazar-Alvarez, German
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles2011Inngår i: NANOSCALE, ISSN 2040-3364, Vol. 3, nr 9, s. 3563-3566Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.

  • 23. Geng, S.
    et al.
    Yao, Kun
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Harila, M.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Oksman, K.
    Grafting polyethylene glycol on nanocellulose toward biodegradable polymer nanocomposites2017Inngår i: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The reinforcing effect of a small amount of nanocellulose materials on biodegradable and polymer-based nanocomposites remains challenging because of the poor dispersion of the nanomaterials and inefficient interaction between the nanocellulose and the polymer matrix. To improve this, we grafted polyethylene glycol (PEG) on nanocellulose and produced composites of 0.1 wt% nanocellulose materials and polylactic acid (PLA) matrix. Here, two types of PEG grafted nanocellulose including TEMPO-oxidized cellulose nanocrystals (TOCNCs) and cellulose nanofibers (TOCNFs), with different lengths and diameters were used as reinforcements, respectively. We investigated the effects of grafting PEG on microstructure, mechanical properties and thermal behaviors of the PLA/nanocellulose composites. It is found that the PEG grafted nanocellulose dispersed better compared to the unmodified nanocellulose in the PLA matrix, and provides higher reinforcing effect that improves the elastic modulus of the nanocomposites compared to the composites with unmodified nanocellulose and ungrafted PEG. However, the glass transition temperature of the nanocomposites was not improved by grafting PEG significantly. We also found that the nanocomposites reinforced by TOCNF exhibited enhanced mechanical and thermal properties compared to those with TOCNCs, which is caused by the higher aspect ratio of the TOCNFs. 

  • 24.
    Geng, Shiyu
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Luleå Univ Technol, Div Mat Sci, Dept Engn Sci & Math, SE-97187 Luleå, Sweden.
    Yao, Kun
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Oksman, Kristiina
    Luleå Univ Technol, Div Mat Sci, Dept Engn Sci & Math, SE-97187 Luleå, Sweden.;Univ Oulu, Fibre & Particle Engn, FI-90014 Oulu, Finland..
    High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose2018Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 10, s. 4075-4083Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Multifunctional lightweight, flexible, yet strong polymer-based nanocomposites are highly desired for specific applications. However, the control of orientation and dispersion of reinforcing nanoparticles and the optimization of the interfacial interaction still pose substantial challenges in nanocellulose-reinforced polymer composites. In this study, poly(ethylene glycol) (PEG)-grafted cellulose nanofibers have demonstrated much better dispersion in a poly(lactic acid) (PLA) matrix as compared to unmodified nanocellulose. Through a uniaxial drawing method, aligned PLA/nanocellulose nanocomposites with high strength, high toughness, and unique optical behavior can be obtained. With the incorporation of 0.1 wt % of the PEG-grafted cellulose nanofibers in PLA, the ultimate strength of the aligned nanocomposite reaches 343 MPa, which is significantly higher than that of other aligned PLA-based nanocomposites reported previously. Moreover, its ultimate strength and toughness are enhanced by 39% and 70%, respectively, as compared to the aligned nanocomposite reinforced with unmodified cellulose nanofibers. In addition, the aligned nanocomposite film is highly transparent and possesses an anisotropic light scattering effect, revealing its significant potential for optical applications.

  • 25.
    Guerriero, Gea
    et al.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Avino, Mariano
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Fugelstad, Johanna
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Clergeot, Pierre-Henri
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs2010Inngår i: PLOS PATHOG, ISSN 1553-7366, Vol. 6, nr 8, s. e1001070-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.

  • 26. Gunnarsson, Lavinia Cicortas
    et al.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Montanier, Cedric
    Karlsson, Eva Nordberg
    Brumer, Harry
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Ohlin, Mats
    Engineered xyloglucan specificity in a carbohydrate-binding module2006Inngår i: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 16, nr 12, s. 1171-1180Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved.

  • 27. Henriksson, Marielle
    et al.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Method of producing and the use of microfibrillated paper2009Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to a method of producing a cellulose based paper, the paper itself and the use thereof where the paper exhibits enhanced mechanical properties. The method involves providing a suspension of well dispersed modified cellulose at a low concentration. The properties and the chemical structure of the paper make it suitable for in vivo applications such as implant material.

  • 28.
    Henriksson, Marielle
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Producing paper, useful as e.g. filter paper, speaker membrane and suture, comprises providing modified nanofibrils of cellulose, providing suspension of modified nanofibrils, and filtering, dewatering and drying the nanofibrils2009Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to a method of producing a cellulose based paper, the paper itself and the use thereof where the paper exhibits enhanced mechanical properties. The method involves providing a suspension of well dispersed modified cellulose at a low concentration. The properties and the chemical structure of the paper make it suitable for in vivo applications such as implant material.

  • 29.
    Joby Kochumalayil, Jose
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Bergenstråhle-Wohlert, Malin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: Extending the range of mechanical and barrier properties2013Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, nr 1, s. 84-91Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of clay bionanocomposites requires processing routes with nanostructural control. Moreover, moisture durability is a concern with water-soluble biopolymers. Here, oriented bionanocomposite coatings with strong in-plane orientation of clay platelets are for the first time prepared by continuous water-based processing. Montmorillonite (MTM) and a "new" unmodified biological polymer (xyloglucan (XG)) are combined. The resulting nanocomposites are characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM is measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties are measured, also at high relative humidity. The reinforcement effects are modeled. XG dimensions in composites are estimated using atomistic simulations. The nanostructure shows highly oriented and intercalated clay platelets. The reinforcement efficiency and effects on barrier properties are remarkable and are likely to be due to highly oriented and well-dispersed MTM and strong XG-MTM interactions. Properties are well preserved in humid conditions and the reasons for this are discussed.

  • 30.
    Joby Kochumalayil, Jose
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Kasai, Wakako
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films2013Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 93, nr 2, s. 466-472Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biobased polymers such as starch and hemicelluloses from wood are of interest for packaging applications, but suffer from limitations in performance under moist conditions. Xyloglucan from industrial tamarind seed waste offers potential, but its Tg is too high for thermal processing applications. Regioselective modification is therefore performed using an approach involving periodate oxidation followed by reduction. The resulting polymer structures are characterized using MALDI-TOF-MS, size-exclusion chromatography, FTIR and carbohydrate analysis. Films are cast from water and characterized by thermo-gravimetry, dynamic mechanical thermal analysis, dynamic water vapor sorption, oxygen transmission and tensile tests. Property changes are interpreted from structural changes. These new polymers show much superior performance to current petroleum-based polymers in industrial use. Furthermore, this regioselective modification can be carefully controlled, and results in a new type of cellulose derivatives with preserved cellulose backbone without the need for harmful solvents.

  • 31.
    Kanoth, Bipinbal Parambath
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Claudino, Mauro
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Johansson, Mats
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry2015Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 30, s. 16303-16310Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Natural rubber/cellulose nanocrystals (NR/CNCs) form true biocomposites from renewable resources and are demonstrated to show significantly improved thermo-mechanical properties and reduced stress-softening. The nanocomposites were prepared from chemically functionalized CNCs bearing thiols. CNCs served as both reinforcing and cross-linking agents in the NR matrix, and the study was designed to prove the cross-linking function of modified CNCs. CNCs were prepared from cotton, and the cross-linkable mercapto-groups were introduced onto the surface of CNCs by esterification. Nanocomposite films were prepared by dispersing the modified CNCs (m-CNCs) in NR matrix by solution casting. The cross-links at the filler matrix (m-CNCs NR) interface were generated by photochemically initiated thiol-ene reactions as monitored by real-time FTIR analysis. The synergistic effects of reinforcement and chemical cross-linking at the m-CNCs NR interface on structure, thermo-mechanical, and stress-softening behavior were investigated. Methods included field emission scanning electron microscopy (FE-SEM), swelling tests, dynamic mechanical analysis, and tensile tests. Compared to biocomposites from NR with unmodified CNCs, the NR/m-CNCs nanocomposites showed 2.4-fold increase in tensile strength, 1.6-fold increase in strain-to-failure, and 2.9-fold increase in work-of-fracture at 10 wt % of m-CNCs in NR.

  • 32.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Tamarind seed xyloglucan: a promising biopolymer matrix for bioinspired nanocomposite materials2010Konferansepaper (Annet vitenskapelig)
  • 33.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Xyloglucan films2009Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention pertains to films comprising xyloglucan, processes for preparing films comprising xyloglucan, as well as various uses of said films as for instance packaging material. Specifically, the present invention relates to xyloglucan films having advantageous properties relating to inter alia tensile strength, elastic modulus, and strain-to-failure.

  • 34.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Tamarind seed xyloglucan: a thermostable high-performance biopolymer from non-food feedstock2010Inngår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 20, nr 21, s. 4321-4327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polysaccharide biopolymers from renewable resources are of great interest as replacements for petroleum-based polymers since they have lower cradle-to-grave non-renewable energy use and greenhouse gas emissions. Starch is widely used as a packaging material but is based on food resources such as potato or corn, and suffers from high sensitivity to water vapor even under ambient conditions. For the first time, xyloglucan (XG) from tamarind seed waste is explored as an alternative high-performance biopolymer from non-food feedstock. XG is purified, and dissolved in water to cast films. Moisture sorption isotherms, tensile tests and dynamic mechanical thermal analysis are performed. Glycerol plasticization toughening and enzymatic modification (partial removal of galactose in side chains of XG) are attempted as means of modification. XG films show much lower moisture sorption than the amylose component in starches. Stiffness and strength are very high, with considerable ductility and toughness. The thermal stability is exceptionally high and is approaching 250 degrees C. Glycerol plasticization is effective already at 10% glycerol. These observations point towards the potential of XG as a "new'' biopolymer from renewable non-food plant resources for replacement of petroleum-based polymers.

  • 35.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Nanostructured high-performance biocomposites based on Tamarind seed polysaccharide2011Konferansepaper (Annet vitenskapelig)
  • 36.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Nanostructured high-performance biocomposites based on Tamarind seed xyloglucan2011Konferansepaper (Annet vitenskapelig)
  • 37.
    Koskela, Salla
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wang, Shennan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Xu, Dingfeng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Yang, Xuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Li, Kai
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    McKee, Lauren S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres2019Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, nr 21, s. 5924-5933Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The production of cellulose nanofibres (CNFs) typically requires harsh chemistry and strong mechanical fibrillation, both of which have negative environmental impacts. A possible solution is offered by lytic polysaccharide monooxygenases (LPMOs), oxidative enzymes that boost cellulose fibrillation. Although the role of LPMOs in oxidative modification of cellulosic substrates is rather well established, their use in the production of cellulose nanomaterials is not fully explored, and the effect of the carbohydrate-binding module (CBM) on nanofibrillation has not yet been reported. Herein, we studied the activity of two LPMOs, one of which was appended to a CBM, on delignified softwood fibres for green and energy-efficient production of CNFs. The CNFs were used to prepare cellulose nanopapers, and the structure and properties of both nanofibres and nanopapers were determined. Both enzymes were able to facilitate nanocellulose fibrillation and increase colloidal stability of the produced CNFs. However, the CBM-lacking LPMO was more efficient in introducing carboxyl groups (0.53 mmol/g) on the cellulose fibre surfaces and releasing CNFs with thinner width (4.3 ± 1.5 nm) from delignified spruce fibres than the modular LPMO (carboxylate content of 0.38 mmol/g and nanofibre width of 6.7± 2.5 nm through LPMO pretreatment followed by mild homogenisation. The prepared nanopapers showed improved mechanical properties (tensile strength of 262 MPa, and modulus of 16.2 GPa) compared to conventional CNFs preparation methods, demonstrating the potential of LPMOs as green alternatives for cellulose nanomaterials preparation.

  • 38.
    Koskela, Salla
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Wang, Shennan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Yang, Xuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Li, Kai
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Srivastava, Vaibhav
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    McKee, Lauren S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Enzyme-assisted preparation of nanocellulose from wood holocellulose fibers2019Annet (Annet vitenskapelig)
  • 39.
    Kupka, Vojtech
    et al.
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic..
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Tang, Hu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH). Royal Inst Technol KTH, AlbaNova Univ Ctr, Sch Biotechnol, S-10691 Stockholm, Sweden..
    Slouf, Miroslav
    Acad Sci Czech Republ, Inst Macromol Chem, CR-16206 Prague, Czech Republic..
    Vojtova, Lucy
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Jancar, Josef
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk2019Inngår i: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569, Vol. 40, s. E456-E465Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polyurethane (PU) nanocomposites utilizing cellulose nanocrystals (CNCs) as nanofiller and amorphous PU matrix were synthesized in a novel solvent-free bulk process. A green nanofiller, CNCs, was studied as reinforcement and was further modified by grafting poly(ethylene glycol) (PEG) on the CNC surface (CNC-PEG). Transmission electron microscopy revealed an excellent dispersion of the PEGylated CNC nanoparticles in the PU matrix, whereas as-received CNCs formed agglomerates. The results indicated strong improvements in tensile properties with Young's modulus increasing up to 50% and strength up to 25% for both, PU/CNC and PU/CNC-PEG nanocomposites. The enhanced tensile modulus was attributed to stiff particle reinforcement together with an increase in glass transition temperature.

  • 40. Larsson, Mikael
    et al.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Larsson, Anette
    Different types of microfibrillated cellulose as filler materials in polysodium acrylate superabsorbents2011Inngår i: Chinese Journal of Polymer Science, ISSN 0256-7679, E-ISSN 1439-6203, Vol. 29, nr 4, s. 407-413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three types of microfibrillated cellulose (MFC) with differences in structure and surface charge were used at low concentration as filler materials in polysodium acrylate superabsorbents (SAPs). The swelling of the composite hydrogels was determined in 0.9% NaCl solution as well as in deionized water. The shear modulus of the samples was determined through uniaxial compression analysis after synthesis and after swelling in 0.9% NaCl solution. Furthermore, the ability to retain filler effects after washing was investigated. The results showed that all of the investigated MFCs had a strong reinforcing effect on the shear modulus after synthesis. The filler effect on swelling and on the associated shear modulus of swollen samples showed a more complicated dependence on structure and surface charge. Finally, it was found that the filler effects were reasonably retained after washing and subsequent drying. The results confirm that MFC holds great potential as a filler material in superabsorbent applications. Furthermore, the results provide some insight on how the structural properties and surface charge of MFC will affect gel properties depending on swelling conditions. This information should be useful in evaluating the use of different types of MFC in future applications.

  • 41.
    Leijon, Felicia
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Melzer, Michael
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Srivastava, Vaibhav
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide.
    Proteomic Analysis of Plasmodesmata From Populus Cell Suspension Cultures in Relation With Callose Biosynthesis.2018Inngår i: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, artikkel-id 1681Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Plasmodesmata are channels that link adjacent cells in plant tissues through which molecular exchanges take place. They are involved in multiple processes vital to plant cells, such as responses to hormonal signaling or environmental challenges including osmotic stress, wounding and pathogen attack. Despite the importance of plasmodesmata, their proteome is not well-defined. Here, we have isolated fractions enriched in plasmodesmata from cell suspension cultures of Populus trichocarpa and identified 201 proteins that are enriched in these fractions, thereby providing further insight on the multiple functions of plasmodesmata. Proteomics analysis revealed an enrichment of proteins specifically involved in responses to stress, transport, metabolism and signal transduction. Consistent with the role of callose deposition and turnover in the closure and aperture of the plasmodesmata and our proteomic analysis, we demonstrate the enrichment of callose synthase activity in the plasmodesmata represented by several gene products. A new form of calcium-independent callose synthase activity was detected, in addition to the typical calcium-dependent enzyme activity, suggesting a role of calcium in the regulation of plasmodesmata through two forms of callose synthase activities. Our report provides the first proteomic investigation of the plasmodesmata from a tree species and the direct biochemical evidence for the occurrence of several forms of active callose synthases in these structures. Data are available via ProteomeXchange with identifier PXD010692.

  • 42.
    Lönnberg, Hanna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Brumer, Harry
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Teeri, Tuula T.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Samir, Said
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    POLY 661-Grafting of poly(e-caprolactone) from microfibrillated cellulose films: for biocomposite applications2007Konferansepaper (Fagfellevurdert)
  • 43.
    Lönnberg, Hanna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate2011Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 71, nr 1, s. 9-12Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interfacial adhesion between immiscible cellulose–polymer interfaces is a crucial property for fibrous biocomposites. To tailor the interfacial adhesion, the grafting of polymers from cellulose films was studied using ring-opening polymerization of ε-caprolactone. The poly(ε-caprolactone) (PCL) grafted cellulose was analyzed with FTIR, AFM and via water CA measurements. The graft length was varied by the addition of a free initiator, enabling tailoring of the interfacial toughness. Films of microfibrillated cellulose were grafted with PCL and hot-pressed together with a PCL-film to form a bilayer laminate. Interfacial peeling toughness correlates very strongly with PCL degree of polymerization (DP). PCL grafts form physical entanglements in the PCL matrix and promote significant plastic deformation in the PCL bulk, thus increasing interfacial peeling energy.

  • 44.
    Lönnberg, Hanna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Towards molecular design of the cellulose/polycaprolactoneinterphase: engineering of debonding toughnessInngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126Artikkel i tidsskrift (Fagfellevurdert)
  • 45.
    Lönnberg, Hanna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO).
    Teeri, Tuula T.
    KTH, Skolan för bioteknologi (BIO).
    Brumer, Harry III
    KTH, Skolan för bioteknologi (BIO).
    Grafting of cellulose fibers with polycaprolactone and poly(lactide) via ring-opening polymerization2006Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, nr 7, s. 2178-2185Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) and L-lactide (L-LA) has been performed from cellulose fibers. The hydroxyl groups on cellulose act as initiators in the polymerization, and the polymers are covalently bonded to the cellulose fiber. As an attempt to introduce more available hydroxyl groups on the surface, and thereby obtain higher grafting efficiency in the ROP of epsilon-CL and L-LA, unmodified paper was modified with xyloglucan-bis(methylol)-2-methylpropanamide (XG-bis-MPA) and 2,2-bis(methylol)propionic acid (bis-MPA), respectively. The grafted substrates were characterized via Fourier transform infrared spectroscopy (FTIR), contact angle measurement, atomic force microscopy, and enzymatic degradation. The results showed a successful grafting of poly(epsilon-caprolactone) (PCL) and poly(L-lactic acid) (PLLA) from the cellulose fiber surfaces. Furthermore, the results showed an improved grafting efficiency after activation of the cellulose surface with bis-MPA, and showed that the amount of grafted polymer could be controlled by the ratio of added free initiator to monomer.

  • 46.
    Moberg, Tobias
    et al.
    Chalmers University of Technology, Sweden.
    Tang, Hu
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Rigdahl, Mikael
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Chalmers University of Technology, Sweden.
    Preparation and Viscoelastic Properties of Composite Fibres Containing Cellulose Nanofibrils: Formation of a Coherent Fibrillar Network2016Inngår i: Journal of Nanomaterials, ISSN 1687-4110, E-ISSN 1687-4129, Vol. 2016, artikkel-id 9569236Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Composite fibres with a matrix of poly(ethylene glycol) (PEG) and cellulose nanofibrils (CNF) as reinforcing elements were produced using a capillary viscometer. Two types of CNF were employed: one based on carboxymethylated pulp fibres and the other on TEMPO-oxidized pulp. Part of the latter nanofibrils was also grafted with PEG in order to improve the compatibility between the CNF and the PEG matrix. The nominal CNF-content was kept at 10 or 30 weight-%. The composite fibres were characterized by optical and scanning electron microscopy in addition to dynamic mechanical thermal analysis (DMTA). Evaluation of the storage modulus indicated a clear reinforcing effect of the CNF, more pronounced in the case of the grafted CNF and depending on the amount of CNF. An interesting feature observed during the DMTA-measurements was that the fibrils within the composite fibres appeared to forma rather coherent and load-bearing network which was evident even after removing of the PEG-phase (by melting). An analysis of the modulus of the composite fibres using a rather simple model indicated that the CNF were more efficient as reinforcing elements at lower concentrations which may be associated with a more pronounced aggregation as the volume fraction of CNF increased.

  • 47.
    Morimune-Moriya, Seira
    et al.
    Chubu Univ, Coll Engn, Dept Appl Chem, Matsumoto, Nagano 4878501, Japan..
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för bioteknologi (BIO).
    Nishino, Takashi
    Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Kobe, Hyogo 6578501, Japan..
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films2018Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 7, s. 2423-2431Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although research on nanopaper structures from cellulose nanofibrils (CNFs) is well established, the mechanical behavior is not well understood, especially not when CNF is combined with hard nanoparticles. Cationic CNF (Q-CNF) was prepared and successfully decorated by anionic nanodiamond (ND) nanoparticles in hydrocolloidal form. The Q-CNF/ND nanocomposites were filtered from a hydrocolloid and dried. Unlike many other carbon nano composites, the QCNF/ND nanocomposites were optically transparent. Reinforcement effects from the nanodiamond were remarkable, such as Young's modulus (9.8 -> 16.6 GPa) and tensile strength (209.5 -> 277.5 MPa) at a content of only 1.9% v/v of ND, and the reinforcement mechanisms are discussed. Strong effects on CNF network deformation mechanisms were revealed by loading unloading experiments. Scratch hardness also increased strongly with increased addition of ND.

  • 48.
    Mushi, Ngesa Ezekiel
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Butchosa, Nuria
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanostructured membranes based on native chitin nanofibers prepared by mild process2014Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 112, s. 255-263Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Procedures for chitin nanofiber or nanocrystal extraction from Crustaceans modify the chitin structure significantly, through surface deacetylation, surface oxidation and/or molar mass degradation. Here, very mild conditions were used to disintegrate chitin fibril bundles and isolate low protein content individualized chitin nanofibers, and prepare nanostructured high-strength chitin membranes. Most of the strongly 'bound' protein was removed. The degree of acetylation, crystal structure as well as length and width of the native chitin microfibrils in the organism were successfully preserved. Atomic force microscopy and scanning transmission electron microscopy, showed chitin nanofibers with width between 3 and 4 nm. Chitin membranes were prepared by filtration of hydrocolloidal nanofiber suspensions. Mechanical and optical properties were measured. The highest data so far reported for nanostructured chitin membranes was obtained for ultimate tensile strength, strain to failure and work to fracture. Strong correlation was observed between low residual protein content and high tensile properties and the reasons for this are discussed.

  • 49.
    Mushi, Ngesa Ezekiel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Department of Mechanical and Industrial Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar es Salaam, Tanzania.
    Nishino, Takashi
    Kobe Univ, Dept Chem Sci & Engn, Kobe, Hyogo 6578501, Japan..
    Berglund, Lars A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Strong and Tough Chitin Film from alpha-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition2019Inngår i: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 7, nr 1, s. 1692-1697Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chitin nanofibers are an interesting biological nanomaterial for advanced applications, for example, in medicine, electronics, packaging and water purification. The challenge is to separate chitin nanofibers from protein in the exoskeleton structure of arthropods and avoid nanofibril aggregation to realize the mechanical potential of chitin. In this work, we developed a new method for the preparation of chitin nanofibers from lobster shell exoskeleton using 10 wt % chitosan as a sacrificial polymer. The addition of chitosan in the raw chitin colloidal suspension during high pressure homogenization process at pH 3 significantly reduced the agglomeration of chitin nanofibers as revealed by dynamic light scattering and transmission electron microscopy. Chitin film prepared from the chitin nanofiber suspension by vacuum filtration exhibited a true nanofibrils network structure without fibril aggregations as characterized by scanning electron microscopy. The presence of chitosan not only improves the colloidal stability of chitin nanofibers suspension but also facilitates the formation of chitin nanofiber network structure in the film as indicated by wide-angle X-ray diffraction analysis. The chitin nanofiber film with 4 +/- 1 wt % residual chitosan showed high tensile strength (187.2 +/- 5.6 MPa) and high work of fracture (12.1 +/- 0.4 MJ/m(3)), much higher than those chitin and chitosan films reported previously in the literature.

  • 50.
    Mushi, Ngesa Ezekiel Zekiel
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Cervin, Nicholas Tchang Chang
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nanostructurally Controlled Hydrogel Based on Small-Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties2016Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4nm diameters, aspect ratios between 25-250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0wt% were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto-porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13kPa at 3wt%) and compression modulus (309kPa at 2wt%) are the highest reported for chitin nanofibers hydrogels.

123 1 - 50 of 107
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf