Endre søk
Begrens søket
1 - 29 of 29
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ansari, Farhan
    KTH.
    Cellulose fibers reinforced thermoset composites - micro vs nano2016Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikkel i tidsskrift (Annet vitenskapelig)
  • 2.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Tensile Properties of Wood Cellulose Nanopaper and Nanocomposite Films2016Inngår i: Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Elsevier Inc. , 2016, s. 115-130Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    The nanocellulose fibril is the major load-bearing component in the wood cell wall. It is readily disintegrated from wood pulp, and of great interest as a component in new materials. It can be used to form 100% cellulose nanofiber (CNF) nanopaper films or polymer matrix nanocomposite films of high cellulose content, where the CNF network controls most physical properties. Here, the uniaxial tensile properties of CNF nanopaper and composite films are discussed, together with the deformation mechanisms. The CNF network and most types of nanocomposite films are prepared by a scalable filtration process akin to paper-making. The effects of intrinsic CNF properties, degree of CNF dispersion, CNF-CNF adhesion, CNF-polymer matrix interaction, CNF orientation, and humidity are also discussed.

  • 3.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring2018Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 7, s. 2341-2350Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose nanocomposites can be considered for semistructural load-bearing applications where modulus and strength requirements exceed 10 GPa and 100 MPa, respectively. Such properties are higher than for most neat polymers but typical for molded short glass fiber composites. The research challenge for polymer matrix biocomposites is to develop processing concepts that allow high cellulose nanofibril (CNF) content, nanostructural control in the form of well-dispersed CNF, the use of suitable polymer matrices, as well as molecular scale interface tailoring to address moisture effects. From a practical point of view, the processing concept needs to be scalable so that large-scale industrial processing is feasible. The vast majority of cellulose nanocomposite studies elaborate on materials with low nanocellulose content. An important reason is the challenge to prevent CNF agglomeration at high CNF content. Research activities are therefore needed on concepts with the potential for rapid processing with controlled nanostructure, including well-dispersed fibrils at high CNF content so that favorable properties are obtained. This perspective discusses processing strategies, agglomeration problems, opportunities, and effects from interface tailoring. Specifically, preformed CNF mats can be used to design nanostructured biocomposites with high CNF content. Because very few composite materials combine functional and structural properties, CNF materials are an exception in this sense. The suggested processing concept could include functional components (inorganic clays, carbon nanotubes, magnetic nanoparticles, among others). In functional three-phase systems, CNF networks are combined with functional components (nanoparticles or fibril coatings) together with a ductile polymer matrix. Such materials can have functional properties (optical, magnetic, electric, etc.) in combination with mechanical performance, and the comparably low cost of nanocellulose may facilitate the use of large nanocomposite structures in industrial applications.

  • 4.
    Ansari, Farhan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Berglund, Lars
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Medina, Lilian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Epoxies can solve moisture problems in nanocellulose materials2017Inngår i: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, s. 1220-1227Konferansepaper (Fagfellevurdert)
  • 5.
    Ansari, Farhan
    et al.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Ding, Yichuan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Dauskardt, Reinhold H.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Toward Sustainable Multifunctional Coatings Containing Nanocellulose in a Hybrid Glass Matrix2018Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, nr 6, s. 5495-5503Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on a sustainable route to protective nanocomposite coatings, where one of the components, nanocellulose fibrils, is derived from trees and the glass matrix is an inexpensive sol-gel organic-inorganic hybrid of zirconium alkoxide and an epoxy-functionalized silane. The hydrophilic nature of the colloidal nanocellulose fibrils is exploited to obtain a homogeneous one-pot suspension of the nanocellulose in the aqueous sol-gel matrix precursors solution. The mixture is then sprayed to form nano composite coatings of a well-dispersed, random in-plane nano cellulose fibril network in a continuous organic inorganic glass matrix phase. The nanocellulose incorporation in the sol-gel matrix resulted in nanostructured composites with marked effects on salient coating properties including optical transmittance, hardness, fracture energy, and water contact angle. The particular role of the nanocellulose fibrils on coating fracture properties, important for coating reliability, was analyzed and discussed in terms of fibril morphology, molecular matrix, and nanocellulose/matrix interactions.

  • 6.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Erik, Lindh
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Mats, Johansson
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Lars, Berglund
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Interface tailoring through covalent hydroxyl-epoxy bonds improves  hygromechanical stability in nanocellulose materialsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Wide-spread use of cellulose nanofibril (CNF) biocomposites and nanomaterials is limited by CNF moisture sensitivity due to surface hydration. We report on a versatile and scalable interface tailoring route for CNF to address this, based on technically important epoxide chemistry. Bulk impregnation of epoxide-amine containing liquids is used to show that CNF hydroxyls can react with epoxides at high rates and high degree of conversion to form covalent bonds. Reactions take place inside nanostructured CNF networks under benign conditions, and are verified by solid state NMR. Epoxide modified CNF nanopaper shows significantly improved mechanical properties under moist and wet conditions. High resolution microscopy is used in fractography studies to relate the property differences to structural change. The cellulose-epoxide interface tailoring concept is versatile in that the functionality of molecules with epoxide end-groups can be varied over a wide range. Furthermore, epoxide reactions with nanocellulose can be readily implemented for processing of moisture-stable, tailored interface biocomposites in the form of coatings, adhesives and molded composites.

  • 7.
    Ansari, Farhan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Galland, Sylvain
    Fernberg, P.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Stiff and ductile nanocomposites of epoxy reinforced with cellulose nanofibrils2013Inngår i: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2013, s. 5575-5582Konferansepaper (Fagfellevurdert)
  • 8.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Galland, Sylvain
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Johansson, Mats
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Cellulose nanofiber network of high specific surface area provides altered curing reacion and moisture stability in ductile epoxy biocompositesManuskript (preprint) (Annet vitenskapelig)
  • 9.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Galland, Sylvain
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Johansson, Mats K. G.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Plummer, Christopher J. G.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate2014Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 63, s. 35-44Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocomposites with high volume fractions (15-50 vol%) of nanofibrillated cellulose (NFC) were prepared by impregnation of a wet porous NFC network with acetone/epoxy/amine solution. Infrared spectroscopy studies revealed a significant increase in curing rate of epoxy (EP) in the presence of NFC. The NFC provided extremely efficient reinforcement (at 15 vol%: 3-fold increase in stiffness and strength to 5.9 GPa and 109 MPa, respectively), and ductility was preserved. Besides, the glass transition temperature increased with increasing NFC content (from 68 degrees C in neat epoxy to 86 degrees C in 50 vol% composite). Most interestingly, the moisture sorption values were low and even comparable to neat epoxy for the 15 vol% NFC/EP. This material did not change mechanical properties at increased relative humidity (90% RH). Thus, NFC/EP provides a unique combination of high strength, modulus, ductility, and moisture stability for a cellulose-based biocomposite. Effects from nanostructural and interfacial tailoring are discussed.

  • 10.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Galland, Sylvain
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Johansson, Mats K. G.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Skrivfars, Mikael
    Plummer, Christopher
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Biocomposites of nanofibrillated cellulose with thermoset resins2014Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, s. 41-CELL-Artikkel i tidsskrift (Annet vitenskapelig)
  • 11.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Granda, L. A.
    Joffe, R.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Vilaseca, Fabiola
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites2017Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 96, s. 147-154Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although the anisotropy of wood fibers is reasonably well established, the anisotropy of injection molded wood fiber composites is not well understood. This work focuses on chemo-thermomechanical pulp (CTMP) reinforced polypropylene (PP) composites. A kinetic mixer (Gelimat) is used for compounding CTMP/PP composites, followed by injection molding. Effects from processing induced orientation on mechanical properties are investigated. For this purpose, a film gate mold was designed to inject composites in the shape of plates so that specimens in different directions to the flow could be evaluated. Observations from tensile tests were complemented by performing flexural tests (in different directions) on discs cut from the injected plates. SEM was used to qualitatively observe the fiber orientation in the composites. At high fiber content, both modulus and tensile strength could differ by as much as 40% along the flow and transverse to the flow. The fiber orientation was strongly increased at the highest fiber content, as concluded from theoretical analysis.

  • 12.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Lindh, Erik L.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Johansson, Mats K.G.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials2016Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 134, s. 175-183Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Wide-spread use of cellulose nanofibril (CNF) biocomposites and nanomaterials is limited by CNF moisture sensitivity due to surface hydration. We report on a versatile and scalable interface tailoring route for CNF to address this, based on technically important epoxide chemistry. Bulk impregnation of epoxide-amine containing liquids is used to show that CNF hydroxyls can react with epoxides at high rates and high degree of conversion to form covalent bonds. Reactions take place inside nanostructured CNF networks under benign conditions, and are verified by solid state NMR. Epoxide modified CNF nanopaper shows significantly improved mechanical properties under moist and wet conditions. High resolution microscopy is used in fractography studies to relate the property differences to structural change. The cellulose-epoxide interface tailoring concept is versatile in that the functionality of molecules with epoxide end-groups can be varied over a wide range. Furthermore, epoxide reactions with nanocellulose can be readily implemented for processing of moisture-stable, tailored interface biocomposites in the form of coatings, adhesives and molded composites.

  • 13.
    Ansari, Farhan
    et al.
    KTH.
    Rojas Escontrillas, Ramiro
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Molecular blending and reinforcing effect of lignin in ductile epoxy resins2017Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikkel i tidsskrift (Annet vitenskapelig)
  • 14.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cellulose nanocomposites - Controlling dispersion and material properties through nanocellulose surface modification2015Inngår i: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The use of cellulosic nanofibers as reinforcement in polymer composites offers great advantages over their petroleum counterparts. Apart from being strong, stiff and low density; they are obtained from naturally occurring resources and as such are favorable from an environmental point of view. A major problem while studying nanomaterials is their tendency to agglomerate, thus leading to inhomogeneous distribution within the polymer matrix. This often results in stress concentrations in the matrix rich regions when the material is subjected to load and therefore, limits the potential application of these materials. A common approach to circumvent this is by surface modification, which facilitates the dispersion in non-polar matrices. An environmental friendly approach, inspired by clay chemistry, was used to functionalize the CNC surface. It was shown that the CNC could be modified in a rather convenient way to attach a variety of functional groups on the surface. Primarily, the problem of cellulose nanocrystal (CNC) distribution in a hydrophobic polymer matrix is investigated. Composites prepared from modified CNC were studied and compared with unmodified CNC. The distribution of the CNC is carefully monitored at different stages via UV-Vis spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the resulting materials were characterized by dynamic mechanical as well as uniaxial tensile tests. It was shown that a homogeneous distribution of the CNC exposes a tremendous amount of surface area to interact with the matrix. In such a case, the stress transfer is much more efficient and perhaps, the matrix behavior is modified, which leads to significant improvements in the mechanical properties.

  • 15.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lars, Berglund
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) matrix2015Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, nr 12, s. 3916-3924Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, the problem to disperse cellulose nanocrystals (CNC) in hydrophobic polymer matrices has been addressed through application of an environmentally friendly chemical modification approach inspired by clay chemistry. The objective is to compare the effects of unmodified CNC and modified CNC (modCNC) reinforcement, where degree of CNC dispersion is of interest. Hydrophobic functionalization made it possible to disperse wood-based modCNC in organic solvent and cast well-dispersed nanocomposite films of poly(vinyl acetate) (PVAc) with 1-20 wt % CNC. Composite films were studied by infrared spectroscopy (FT-IR), UV-vis spectroscopy, dynamic mechanical thermal analysis (DMTA), tensile testing, and field-emission scanning electron microscopy (FE-SEM). Strongly increased mechanical properties were observed for modCNC nanocomposites. The reinforcement efficiency was much lower in unmodified CNC composites, and specific mechanisms causing the differences are discussed.

  • 16.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Sjöstedt, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Biocomposites based on nanostructured chemical wood pulp fibres in epoxy matrixManuskript (preprint) (Annet vitenskapelig)
  • 17.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sjöstedt, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Hierarchical wood cellulose fiber/epoxy biocomposites: Materials design of fiber porosity and nanostructure2015Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 74, s. 60-68Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Delignified chemical wood pulp fibers can be designed to have a controlled structure of cellulose fibril aggregates to serve as porous templates in biocomposites with unique properties. The potential of these fibers as reinforcement for an epoxy matrix (EP) was investigated in this work. Networks of porous wood fibers were impregnated with monomeric epoxy and cured. Microscopy images from ultramicrotomed cross sections and tensile fractured surfaces were used to study the distribution of matrix inside and around the fibers - at two different length scales. Mechanical characterization at different relative humidity showed much improved mechanical properties of biocomposites based on epoxy-impregnated fibers and they were rather insensitive to surrounding humidity. Furthermore, the mechanical properties of cellulose-fiber biocomposites were compared with those of cellulose-nanofibril (CNF) composites; strong similarities were found between the two materials. The reasons for this, some limitations and the role of specific surface area of the fiber are discussed.

  • 18.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Skrifvars, M.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network2015Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 117, s. 298-306Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biocomposites reinforced by natural plant fibers tend to be brittle, moisture sensitive and have limited strength. Wood cellulose nanofibers (CNF) were therefore used to reinforce an unsaturated polyester matrix (UP) without the need of coupling agents or CNF surface modification. The nanostructured CNF network reinforcement strongly improves modulus and strength of UP but also ductility and toughness. A template-based prepreg processing approach of industrial potential is adopted, which combines high CNF content (up to 45 vol%) with nanoscale CNF dispersion. The CNF/UP composites are subjected to moisture sorption, dynamic thermal analysis, tensile tests at different humidities, fracture toughness tests and fractography. The glass transition temperature (T-g) increases substantially with CNF content. Modulus and strength of UP increase about 3 times at 45 vol% CNF whereas ductility and apparent fracture toughness are doubled. Tensile properties at high humidity are compared with other bio-composites and interpreted based on differences in molecular interactions at the interface.

  • 19.
    Ansari, Mohd Farhan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nanostructured Cellulose Biocomposites: Effects from dispersion, network and interface2016Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The major load bearing component in native wood, cellulose nanofibrils, are potential candidates for use as reinforcement in polymer matrices. This study is based on nanocellulose composites and attempts to prepare and characterize biocomposites with high nanocellulose content and investigate the influence of nanostructure on macroscopic properties.

    In an initial study, effects from cellulose nanocrystal (CNC) dispersion on optical and mechanical properties of CNC composites are studied in a model system using polyvinylacetate (PVAc) as the polymer. CNC surface modification is used as an aid to improve dispersion, and nanocomposites with up to 20 wt% of modified and unmodified CNC are characterized. Strong influence of CNC as reinforcement and on polymer matrix characteristics were observed with well-dispersed CNCs, resulting in nanocomposites with significantly improved mechanical properties.

    In the subsequent parts, an impregnation-based processing strategy is used to prepare cellulose nanofibril (CNF) based thermoset (epoxy and unsaturated polyester) composites with high CNF content (15 - 50 vol%). Influence of CNF surface hydroxyls on epoxy curing is discussed. A mono-epoxy compound is used to confirm covalent epoxy/CNF reaction and the implications of this modification on mechanical properties of wet CNF network are illustrated. Mechanical properties of thermoset composites are characterized at different relative humidities to evaluate their hygromechanical stability. The role of the CNF-thermoset interface is investigated by comparing composites with epoxy and unsaturated polyester matrices. Unique effects due to the nanostructure of composites are discussed with respect to CNF dispersion, CNF network characteristics and CNF/matrix interface. Additionally, pulp fiber composites, where the fiber wall itself is impregnated with resin, are designed and differences between nanocellulose (nanoscale network) and pulp fibers (microscale diameter) as reinforcements are analyzed.

  • 20.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ansari, Farhan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface2019Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 2, s. 598-607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A critical aspect in materials design of polymer nanocomposites is the nature of the nanoparticle/polymer interface. The present study investigates the effect of manipulation of the interface between cellulose nanofibrils (CNF) and poly(methyl methacrylate) (PMMA) on the optical, thermal, and mechanical properties of the corresponding nanocomposites. The CNF/PMMA interface is altered with a minimum of changes in material composition so that interface effects can be analyzed. The hydroxyl-rich surface of CNF fibrils is exploited to modify the CNF surface via an epoxide-hydroxyl reaction. CNF/PMMA nanocomposites are then prepared with high CNF content (similar to 38 wt %) using an approach where a porous CNF mat is impregnated with monomer or polymer. The nanocomposite interface is controlled by either providing PMMA grafts from the modified CNF surface or by solvent-assisted diffusion of PMMA into a CNF network (native and modified). The high content of CNF fibrils of similar to 6 nm diameter leads to a strong interface and polymer matrix distribution effects. Moisture uptake and mechanical properties are measured at different relative humidity conditions. The nanocomposites with PMMA molecules grafted to cellulose exhibited much higher optical transparency, thermal stability, and hygro-mechanical properties than the control samples. The present modification and preparation strategies are versatile and may be used for cellulose nanocomposites of other compositions, architectures, properties, and functionalities.

  • 21. Keshavarzi, Neda
    et al.
    Rad, Farshid Mashayekhy
    Mace, Amber
    Ansari, Farhan
    Akhtar, Farid
    Nilsson, Ulrika
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bergstrom, Lennart
    Nanocellulose-Zeolite Composite Films for Odor Elimination2015Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 26, s. 14254-14262Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 mu m thick zeolite CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography mass spectroscopy (GC/MS) analysis showed that the CNF zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  • 22.
    Kupka, Vojtech
    et al.
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic..
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Tang, Hu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH). Royal Inst Technol KTH, AlbaNova Univ Ctr, Sch Biotechnol, S-10691 Stockholm, Sweden..
    Slouf, Miroslav
    Acad Sci Czech Republ, Inst Macromol Chem, CR-16206 Prague, Czech Republic..
    Vojtova, Lucy
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Jancar, Josef
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk2019Inngår i: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569, Vol. 40, s. E456-E465Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polyurethane (PU) nanocomposites utilizing cellulose nanocrystals (CNCs) as nanofiller and amorphous PU matrix were synthesized in a novel solvent-free bulk process. A green nanofiller, CNCs, was studied as reinforcement and was further modified by grafting poly(ethylene glycol) (PEG) on the CNC surface (CNC-PEG). Transmission electron microscopy revealed an excellent dispersion of the PEGylated CNC nanoparticles in the PU matrix, whereas as-received CNCs formed agglomerates. The results indicated strong improvements in tensile properties with Young's modulus increasing up to 50% and strength up to 25% for both, PU/CNC and PU/CNC-PEG nanocomposites. The enhanced tensile modulus was attributed to stiff particle reinforcement together with an increase in glass transition temperature.

  • 23.
    Medina, Lilian
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, Federico
    Salajkova, Michaela
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nanocomposites from Clay, Cellulose Nanofibrils, and Epoxy with Improved Moisture Stability for Coatings and Semi-Structural Applications2019Inngår i: ACS Applied Nano Materials, E-ISSN 2574-0970Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new type of high reinforcement content clay-cellulose-thermoset nanocomposite was proposed, where epoxy precursors diffused into a wet porous clay-nanocellulose mat, followed by curing. The processing concept was scaled to > 200 µm thickness composites, the mechanical properties were high for nanocomposites and the materials showed better tensile properties at 90% RH compared with typical nanocellulose materials. The nanostructure and phase distributions were studied using transmission electron microscopy; Young’s modulus, yield strength, ultimate strength and ductility were determined as well as moisture sorption, fire retardancy and oxygen barrier properties. Clay and cellulose contents were varied, as well as the epoxy content. Epoxy had favorable effects on moisture stability, and also improved reinforcement effects at low reinforcement content. More homogeneous nano- and mesoscale epoxy distribution is still required for further property improvements. The materials constitute a new type of three-phase nanocomposites, of interest as coatings, films and as laminated composites for semi-structural applications.

  • 24.
    Mittal, Nitesh
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States.
    Gowda, Krishne, V
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brouzet, Christophe
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Chen, Pan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. RISE Bioeconomy, P.O. Box 5604, Stockholm, SwedenRISE Bioeconomy, P.O. Box 5604, Stockholm, Sweden.
    Roth, Stephan Volkher
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Kotov, Nicholas Alexander
    Söderberg, Daniel
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers2018Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, nr 7, s. 6378-6388Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.

  • 25. Parikka, K.
    et al.
    Ansari, Farhan
    Indian Institute of Technology IIT Roorkee, India.
    Hietala, S.
    Tenkanen, M.
    Thermally stable hydrogels from enzymatically oxidized polysaccharides2012Inngår i: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 26, nr 1, s. 212-220Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polysaccharides guar galactomannan (guar gum), locust bean galactomannan (locust bean gum) and tamarind galactoxyloglucan were selectively oxidized by galactose oxidase. The degrees of oxidation of the products were 18-28% for guar galactomannan, 10-16% for locust bean galactomannan and 12-14% for tamarind galactoxyloglucan, calculated from the ratio of oxidized galactose units and total carbohydrates. The rheological properties of the unoxidized and oxidized polysaccharide solutions were investigated by determining their viscosities, storage and loss moduli, and temperature dependence of moduli from 20 °C to 90 °C. All the studied oxidized polysaccharides formed hydrogels throughout the entire temperature range. Concentration (0.2-1% w/v) and degree of oxidation had an effect on the gel formation. The oxidized galactomannans formed stable gels already in low concentrations, such as 0.2-0.4% w/v, while oxidized galactoxyloglucan required a concentration of 0.8% w/v to be stable up to 90 °C. The oxidized polysaccharide hydrogels are highly potential materials for food and medical applications requiring thermal stability.

  • 26. Plummer, C. J. G.
    et al.
    Galland, Sylvain
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Ecole Polytech Fed Lausanne, Switzerland.
    Ansari, Farhan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Leterrier, Y.
    Bourban, P. -E
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Manson, J. -AE.
    Influence of processing routes on morphology and low strain stiffness of polymer/nanofibrillated cellulose composites2015Inngår i: Plastics, rubber and composites, ISSN 1465-8011, E-ISSN 1743-2898, Vol. 44, nr 3, s. 81-86Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The morphology of polymer/nanofibrillated cellulose (NFC) composite sheets produced using different techniques and its influence on low strain stiffness were assessed by optical and transmission electron microscopy. Solvent processing led to relatively homogeneous NFC dispersions and significant reinforcement of the in-plane Young's modulus. The continuous cellular networks obtained by wet comingling of polylactide powder or latex with NFC also provided efficient and essentially scale independent reinforcement, in spite of the extensive agglomeration of the NFC. However, the irreversible nature of these networks is incompatible with low pressure thermoplastic processing routes such as physical foaming, and while they may be broken up by e.g. extrusion, this led to substantial loss in reinforcement, particularly at temperatures above the glass transition temperature of the matrix, consistent with the observation of isolated low aspect ratio NFC aggregates in the extruded specimens.

  • 27. Plummer, C. J. G.
    et al.
    Galland, Sylvain
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland .
    Ansari, Farhan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Leterrier, Y.
    Bourban, P. -E
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Månson, J. -AE.
    Influence of processing routes on the morphology and properties of polymer/nanofibrillated cellulose composites2014Inngår i: 16th European Conference on Composite Materials, ECCM 2014, 2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The morphology of polymer/nanofibrillated cellulose (NFC) composite sheets produced using different techniques and its influence on low strain stiffness were assessed by optical and transmission electron microscopy. Solvent processing led to relatively homogeneous NFC dispersions and significant reinforcement of the in-plane Young's modulus. The continuous cellular networks obtained by wet-comingling of PLA powder or latex with NFC also provided efficient and essentially scale-independent reinforcement, in spite of the extensive agglomeration of the NFC. However, the irreversible nature of these networks is incompatible with low pressure thermoplastic processing routes such as physical foaming, and while they may be broken up by e.g. extrusion, this led to substantial loss in reinforcement, particularly above Tg, consistent with the observation of isolated low aspect ratio NFC aggregates in the extruded specimens.

  • 28. Stepan, Agnes M.
    et al.
    Ansari, Farhan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Gatenholm, Paul
    Nanofibrillated cellulose reinforced acetylated arabinoxylan films2014Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 98, s. 72-78Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, acetylated rye arabinoxylan (AcAX) films were reinforced with nanofibrillated cellulose from spruce (NFC) ranging from I to 10 wt% of the total composition. Free-standing composite films were casted without the use of any plasticizers. The homogeneous dispersion of NFC in the films was confirmed with scanning electron microscopy. The ultimate strength and the Young's modulus determined by tensile tests increased from 65 MPa and 2190 MPa for neat AcAX films to 93 MPa and 3360 MPa for the 10% composite films, respectively. The elongation to break of the 10% NFC composite film was a remarkable 10.5%. The moisture absorbed was still less than 8 wt% for the films with 10% NFC content at 97% relative humidity at room temperature, which is low for hemicellulose-based films. The addition of NFC decreased the water permeability of the films at low NFC contents, which was studied in diffusion cells using radioactive labeled water. Thus NFC can be used in an unmodified form as reinforcement in AcAX films to prepare films or coatings that are more water and humidity resistant than neat hemicellulose-based films.

  • 29. Zhao, M.
    et al.
    Ansari, Farhan
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Takeuchi, M.
    Shimizu, M.
    Saito, T.
    Berglund, L. A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Isogai, A.
    Nematic structuring of transparent and multifunctional nanocellulose papers2018Inngår i: Nanoscale Horizons, ISSN 2055-6756, Vol. 3, nr 1, s. 28-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The nematic structuring of cellulose nanofibers (CNFs) is proposed as a nanostructural engineering tool for exploiting the potential of CNFs in conceptually new "transparent papers". The nematic-structured CNF papers exhibit superior mechanical properties, optical transparency, gas-barrier properties, heat transfer properties and electrical resistivity, compared with conventional randomly-structured CNF papers.

1 - 29 of 29
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf