Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bottegal, Giulio
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Pillonetto, G.
    Hjalmarsson, Håkan
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Bayesian kernel-based system identification with quantized output data2015Inngår i: IFAC-PapersOnLine, ISSN 2405-8963, Vol. 48, nr 28, s. 455-460Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo (MCMC) methods to provide an estimate of the system. In particular, we show how to design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods when employed in identification of systems with quantized data.

  • 2.
    Everitt, Niklas
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Bottegal, Giulio
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Rojas, Cristian R.
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Hjalmarsson, Håkan
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    On the Effect of Noise Correlation in Parameter Identification of SIMO Systems2015Inngår i: IFAC-PapersOnLine, ISSN 2405-8963, Vol. 48, nr 28, s. 326-331Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The accuracy of identified linear time-invariant single-input multi-output (SIMO) models can be improved when the disturbances affecting the output measurements are spatially correlated. Given a linear parametrization of the modules composing the SIMO structure, we show that the correlation structure of the noise sources and the model structure of the othe modules determine the variance of a parameter estimate. In particular we show that increasing the model order only increases the variance of other modules up to a point. We precisely characterize the variance error of the parameter estimates for finite model orders. We quantify the effect of noise correlation structure, model structure and signal spectra.

  • 3.
    Risuleo, Riccardo Sven
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.
    Bottegal, Giulio
    Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Hjalmarsson, Håkan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.
    Modeling and identification of uncertain-input systems2019Inngår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 105, s. 130-141Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a new class of models, called uncertain-input models, that allows us to treat system-identification problems in which a linear system is subject to a partially unknown input signal. To encode prior information about the input or the linear system, we use Gaussian-process models. We estimate the model from data using the empirical Bayes approach: the hyperparameters that characterize the Gaussian-process models are estimated from the marginal likelihood of the data. We propose an iterative algorithm to find the hyperparameters that relies on the EM method and results in decoupled update steps. Because in the uncertain-input setting neither the marginal likelihood nor the posterior distribution of the unknowns is tractable, we develop an approximation approach based on variational Bayes. As part of the contribution of the paper, we show that this model structure encompasses many classical problems in system identification such as Hammerstein models, blind system identification, and cascaded linear systems. This connection allows us to build a systematic procedure that applies effectively to all the aforementioned problems, as shown in the numerical simulations presented in the paper.

  • 4. Zamani, Mohsen
    et al.
    Bottegal, Giulio
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
    Anderson, Brian D. O.
    On the Zero-Freeness of Tall Multirate Linear Systems2016Inngår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 61, nr 11, s. 3606-3611Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this technical note, tall discrete-time linear systems with multirate outputs are studied. In particular, we focus on their zeros. In systems and control literature zeros of multirate systems are defined as those of their corresponding time-invariant systems obtained through blocking of the original multirate systems. We assume that blocked systems are tall, i.e., have more outputs than inputs. It is demonstrated that, for generic choice of the parameter matrices, linear systems with multirate outputs generically have no finite nonzero zeros. However, they may have zeros at the origin or at infinity depending on the choice of blocking delay and the input, state and output dimensions.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf