Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alander, B.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Capezza, A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material. Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, Alnarp, Sweden.
    Wu, Q.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Johansson, E.
    Olsson, Richard T.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Hedenqvist, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption2018Inngår i: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 119, s. 41-48Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A novel and facile method to produce inexpensive protein biofoams suitable for sponge applications is presented. The protein used in the study was wheat gluten (WG), readily available as a by/co-product, but the method is expected to work for other cross-linkable proteins. The foams were obtained by high-speed stirring of pristine WG powder in water at room temperature followed by drying. Glutaraldehyde was used to crosslink the foam material in order to stabilize the dispersion, reduce its tackiness and improve the strength of the final foam. The foams were of medium to high density and absorbed readily both hydrophobic and hydrophilic liquids. The foam structure, consisting primarily of an open pore/channel system, led to a remarkably fast capillary-driven (pore-filling only) uptake of a hydrophobic liquid (limonene). Essentially all uptake occurred within the first second (to ca. 90% of the dry weight). In a polar liquid (water), the rapid pore-filling occurred in parallel with a more time-dependent swelling of the foam matrix material. Further improvement in the foam strength was achieved by making a denser foam or adding TEMPO-oxidized cellulose nanofibres. Soft foams were obtained by adding glycerol.

  • 2.
    Antonio, Capezza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Andersson, Richard L.
    Ström, Valter
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Wu, Qiong
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Sacchi, Benedetta
    Univ Milan, Dept Chem, Via Golgi 19, I-20133 Milan, Italy.
    Farris, Stefano
    Univ Milan, DeFENS, Dept Food Environm & Nutr Sci, Packaging Div, Via Celoria 2, I-20133 Milan, Italy.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Olsson, Richard T.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Preparation and Comparison of Reduced Graphene Oxide and Carbon Nanotubes as Fillers in Conductive Natural Rubber for Flexible Electronics2019Inngår i: Omega, ISSN 0030-2228, E-ISSN 1541-3764, Vol. 4, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide(rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode. 

  • 3.
    Antonio, Capezza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Newson, W.R.
    Olsson, R.T.
    Hedenquist, M.S:
    Johansson, E
    Advances in the use of protein-based materials: towards sustainable naturally sourced absorbent materials2019Inngår i: American Chemical Society Symposium Series (ACS), ISSN 0097-6156, E-ISSN 1947-5918, Vol. 7, nr 5Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Superabsorbent polymers (SAPs) are important in the health-care and personal care industries. Products like bed pads and diapers improve the comfort and sanitary conditions for people all over the world, with SAPs reaching yearly production volumes of ca. 2 million tons. However, recent sustainability issues have questioned the high negative footprint of polymers from nonrenewable resources. Biomacromolecules, especially when functionalized, have properties that make them an attractive alternative for the production of biobased SAPs. Proteins are a particularly interesting alternative due to their high variability and because of their relatively low price, being available as side streams from the agricultural industries. Due to the harsh extraction conditions, these side stream proteins are not competing with the food industry and alternative source-effective uses are advantageous in a circular bioeconomy. As the properties of a SAP material come from a combination of neutralized functional groups to promote polar liquid uptake and intermolecular cross-links to prevent dissolution, proteins offer unique opportunities due to their variability in polymerization. An increased understanding of the protein characteristics and how these can be tuned through functionalization is therefore a prerequisite for the successful development of a commercial biobased SAP that utilizes industrial and nontoxic wastes toward more sustainable products. This review focuses on proteins as biomacromolecules with relevant characteristics for superabsorbent functions, and discusses the opportunities that they may offer toward sustainable SAPs utilizing nontoxic chemicals and following the green chemistry principles.

  • 4.
    Capezza, Antonio Jose
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Glad, David
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Ozeren, Husamettin Deniz
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Newson, William R.
    SLU Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, Sundsvagen 10, S-23053 Alnarp, Sweden..
    Olsson, Richard
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Johansson, Eva
    SLU Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, Sundsvagen 10, S-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Novel Sustainable Superabsorbents: A One-Pot Method for Functionalization of Side-Stream Potato Proteins2019Inngår i: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 7, nr 21, s. 17845-17854Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The functionalization of inexpensive potato protein concentrate (PPC) is presented as a simple and easily scalable method to produce bio-based superabsorbent powders. Five nontoxic acylating agents were evaluated at different reaction temperatures for solvent-free acylation of the protein. The best results were obtained for succinic anhydride (SA) and a reaction temperature of 140 degrees C. These conditions resulted in efficient functionalization that provided formation of a useful network, which allowed high uptake of fluids and little material disintegration during the uptake, that is, due to protein hydrolysis during the functionalization. The SA-acylated PPC showed increased water and saline swelling capacities of 600 and 60%, respectively, as compared to untreated PPC. The acylated potato protein also showed a saline liquid holding capacity of approximately 50% after centrifugation at 1230 rpm for 3 min, as well as a significant blood swelling capacity of 530%. This blood swelling represents more than 50% of that of a commercial fossil-based superabsorbent (SAP) used for blood absorption in sanitary health products. The swelling properties of these inexpensive protein-based acylated materials highlight their potential as sustainable SAP materials (from industrial side-streams) in applications such as daily care products that are currently dominated by fossil-based SAPs.

  • 5.
    Capezza, Antonio Jose
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material. SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden.
    Wu, Qiong
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Newson, William R.
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden..
    Olsson, Richard
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Espuche, Eliane
    Univ Lyon, Univ Lyon1, Ingn Mat Polymeres, UMR CNRS 5223, Batiment Polytech 15,Bd Andre Latarjet, F-69622 Villeurbanne, France..
    Johansson, Eva
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers2019Inngår i: ACS OMEGA, ISSN 2470-1343, Vol. 4, nr 19, s. 18257-18267Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of fully natural wheat gluten foams showing rapid and high uptake of water, sheep blood, and saline solution, while maintaining high mechanical stability in the swollen state, is presented. Genipin was added as a natural and polar cross-linker to increase the polarity of the protein chains, whereas cellulose nanofibers (CNFs) were added as a reinforcement/stiffener of the foams, alone or in combination with the genipin. The presence of only genipin resulted in a foam that absorbed up to 25 g of water per gram of foam and a more than 15 g uptake in only 8 min. In contrast, with CNF alone, it was not possible to maintain the mechanical stability of the foam during the water uptake and the protein foam disintegrated. The combination of CNF and genipin yielded a material with the best mechanical stability of the tested samples. In the latter case, the foam could be compressed repeatedly more than 80% without displaying any structural damage. The results revealed that a strong network had formed between the wheat gluten matrix, genipin, and cellulose in the foam structure. A unique feature of the absorbent/foam, in contrast to commercial superabsorbents, was that it was able to rapidly absorb nonpolar liquids (here, n-heptane) due to the open-cell structure. The capillary-driven absorption due to the open-cell structure, the high liquid absorption in the cell walls, and the mechanical properties (both in dry and swollen states) of these natural foams make them interesting as a sustainable replacement for a range of petroleum-based foam materials, including absorbent hygiene products such as sanitary pads.

  • 6.
    Das, Oisik
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Johansson, E.
    Olsson, Richard
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Loho, T. A.
    Capezza, Antonio J.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Singh Raman, R. K.
    Holder, Shima
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    An all-gluten biocomposite: Comparisons with carbon black and pine char composites2019Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 120, s. 42-48Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three different charcoals (gluten char, pine bark char and carbon black) were used to rectify certain property disadvantages of wheat gluten plastic. Pyrolysis process of gluten was investigated by analysing the compounds released at different stages. Nanoindentation tests revealed that the gluten char had the highest hardness (ca. 0.5 GPa) and modulus (7.8 GPa) followed by pine bark char and carbon black. The addition of chars to gluten enhanced the indenter-modulus significantly. Among all the charcoals, gluten char was found to impart the best mechanical and water resistant properties. The addition of only 6 wt% gluten char to the protein caused a substantial reduction in water uptake (by 38%) and increase of indenter-modulus (by 1525%). It was shown that it is possible to obtain protein biocomposites where both the filler and the matrix are naturally sourced from the same material, in this case, yielding an all-gluten derived biocomposite.

  • 7.
    Das, Oisik
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Loho, Thomas Aditya
    Univ Auckland, Dept Chem & Mat Engn, Auckland 1142, New Zealand..
    Capezza, Antonio Jose
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material. Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, S-23053 Alnarp, Sweden..
    Lemrhari, Ibrahim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance2018Inngår i: Coatings, ISSN 2079-6412, Vol. 8, nr 11, artikkel-id 388Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study presents an approach to protect wheat gluten (WG) plastic materials against water/moisture by adhering it with a polyethylene terephthalate (PET) film using a diamine (Jeffamine (R)) as a coupling agent and a compression molding operation. The laminations were applied using two different methods, one where the diamine was mixed with the WG powder and ground together before compression molding the mixture into plates with PET films on both sides. In the other method, the PET was pressed to an already compression molded WG, which had the diamine brushed on the surface of the material. Infrared spectroscopy and nanoindentation data indicated that the diamine did act as a coupling agent to create strong adhesion between the WG and the PET film. Both methods, as expected, yielded highly improved water vapor barrier properties compared to the neat WG. Additionally, these samples remained dimensionally intact. Some unintended side effects associated with the diamine can be alleviated through future optimization studies.

  • 8.
    Das, Oisik
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Rasheed, Faiza
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Kim, Nam Kyeun
    Univ Auckland, Dept Mech Engn, Ctr Adv Composite Mat, Auckland, New Zealand..
    Johansson, Eva
    Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, S-23053 Alnarp, Sweden..
    Capezza, Antonio Jose
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Kalamkarov, Alexander L.
    Dalhousie Univ, Dept Mech Engn, Halifax, NS B3H 4R2, Canada..
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material. KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Polymer Mat Div, Dept Fibre & Polymer Technol, S-10044 Stockholm, Sweden..
    The development of fire and microbe resistant sustainable gluten plastics2019Inngår i: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 222, s. 163-173Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study shows the improvement of fire and microbe resistance of sustainable (protein) plastics (i.e. wheat gluten, WG), by using triethylene glycol diamine and dialdehyde. In addition, an anti-microbial agent (lanosol) was also used separately and in combination with the diamine/dialdehyde. The network formed by the diamine and dialdehyde, during the production of compression-moulded plates, resulted in high fire performance index, large amount of char and low thermal decomposition rate. The best fire resistance was obtained by the combination of the dialdehyde and lanosol, which also yielded a char with the intact surface. The peak-heat-release-rate of this material was only 38% of that of the pure gluten material. This material also showed anti-bacterial (E. coli) properties. However, the diamine was more effective than the combination of dialdehyde/lanosol. Gluten materials with diamine resisted mould growth during a 22 days test at a relative humidity of 100%. The gluten material with the lanosol applied to the sample surface resisted mould growth during a three-week test at both ambient temperature and 37 degrees C. Despite the relatively high contents of the difunctional reagents used (15 wt%), leading to an increased stiffness in most cases, only the network formed with glyoxal resulted in a decrease in water uptake as compared to the pure gluten material.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf