Endre søk
Begrens søket
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Barreiro Fidalgo, Alexandre
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sundin, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Effect of bentonite on radiation induced dissolution of UO2 in an aqueous system2014Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 447, nr 1-3, s. 73-76Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In order to elucidate the impact of bentonite on the process of radiation induced oxidative dissolution of UO2 in an aqueous system, the dissolution of U(VI) and consumption of H2O2 over time has been studied. In addition, γ-irradiation experiments were performed to study a more relevant and complex system, serving as a comparison with the previously stated system. In both cases, the experiments revealed that the presence of bentonite in water could either delay or prevent in part the release of uranium to the environment. The cause is mainly attributed to the scavenging of radiolytic oxidants rather than to the adsorption of uranium onto bentonite.

  • 2.
    Jonsson, Mats
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Nielsen, Fredrik
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Roth, Olivia
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Ekeroth, Ella
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Hossain, Mohammad Mohsin
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Radiation induced spent nuclear fuel dissolution under deep repository conditions2007Inngår i: Environmental Science and Technology, ISSN 0013-936X, Vol. 41, nr 20, s. 7087-7093Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The dynamics of spent nuclear fuel dissolution in groundwater is an important part of the safety assessment of a deep geological repository for high level nuclear waste. In this paper we discuss the most important elementary processes and parameters involved in radiation induced oxidative dissolution of spent nuclear fuel. Based on these processes, we also present a new approach for simulation of spent nuclear fuel dissolution under deep repository conditions. This approach accounts for the effects of fuel age, burn up, noble metal nanoparticle contents, aqueous H-2 and HCO3- concentration, water chemistry, and combinations thereof. The results clearly indicate that solutes consuming H2O2 and combined effects of noble metal nanoparticles and H-2 have significant impact on the rate of spent nuclear fuel dissolution. Using data from the two possible repository sites in Sweden, we have employed the new approach to estimate the maximum rate of spent nuclear fuel dissolution. This estimate indicates that H-2 produced from radiolysis of groundwater alone will be sufficient to inhibit the dissolution, completely for spent nuclear fuel older than 100 years.

  • 3.
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Influence of metallic fission products and self irradiation on the rate of spent nuclear fuel-matrix dissolution2008Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [sv]

    Denna licentiatavhandling behandlar effekten av två inneboende egenskaper (fissions produkter och egenbestrålning) hos utbränt kärnbränsle på hastigheten för strålningsinducerad upplösning av bränslematris (UO2). I ett framtida djupförvar kommer det utbrända kärnbränslet att deponeras 500 meter ner i berggrunden i en reducerande miljö. Under dessa förhållanden är UO2-matrisen själv en av de skyddande barriärerna mot frigörande av radionuklider, på grund av dess låga löslighet. När bränslet kommer i kontakt med vatten kommer U(IV) att oxideras till U(VI) av radiolysprodukter från vattnet och lösligheten för bränslematrisen kommer därmed att öka betydligt.

    De flesta tidigare studier har utförts på obestrålad UO2 som skiljer sig signifikant från utbränt kärnbränsle. I utbränt kärnbränsle är de flesta fissionsprodukterna och neutronaktivieringsprodukterna radioaktiva och bränslet kommer därför bli bestrålat av sig självt. Effekten av joniserande strålning på reaktiviteten för UO2(s) har undersökts här. UO2 (pulver och fragment av en kuts) bestrålades i en 60Co γ-källa eller framför en elektronaccelerator varpå reaktiviteten för UO2 studerades genom oxidation av UO2 med MnO4 -. Det visade sig att reaktiviteten för UO2 ökar när det blir bestrålat för första gången (<20 kGy). Effekten ökar med ökande dos tills den når ett maxvärde ~1.3 gånger reaktiviteten för obestrålad UO2 vid torrbestrålning. Vid våtbestrålning ökar en dos på 140 kGy reaktiviteten 2.5 gånger. Effekten verkar vara permanent.

    Tidigare studier har visat att H2O2 är den viktigaste oxidanten för upplösning av utbränt kärnbränsle under djupförvarsförhållanden. I vätgasatmosfär, som förväntas i ett djupförvar, har det visat sig att upplösningshastigheten är långsammare. Det har delvis förklarats med reaktionen mellan H2O2 och H2, som är väldigt långsam utan katalysator. Den katalytiska effekten av UO2 på den reaktionen har undersökts och det visades att den inte katalyseras av UO2.

    En annan möjlig katalysator för reaktionen är ε-partiklar (ädelmetallpartiklar bestående av Mo, Ru, Tc, Pd och Rh) som bildats av fissionsprodukterna. Pd är en välkänd katalysator för reduktion med H2. Den eventuella katalytiska effekten av Pd har undersökts här. Även en eventuell katalytisk effekt av Pd på reduktionen av U(VI) med H2 undersöktes, både i vattenfas och i UO2-kutsar innehållande olika mängder Pd (som en modell för ε-partiklar).

    Vi fann att Pd har en katalytisk effekt på reaktionen mellan H2O2 och H2 och andra ordningens hastighetskonstant är bestämd till (2.1±0.1)x10-5 m s-1. Pd har också en katalytisk effekt på reduktionen av U(VI) med H2 både i vattenlösning, hastighetskonstant (1.5±0.1)x10-5 m s-1, och i den fasta fasen. Hastighetskonstanten för processen i fast fas är 4x10-7 m s-1 och 7x10-6 m s-1 för kutsar med 1 respektive 3 % Pd. Dessa värden är väldigt nära diffusionsgränsen för den här typen av system. Den katalytiska effekten i den fasta fasen visar att upplösningen för 100 år gammalt bränsle kan stoppas helt. Vid 40 bar H2 krävs 10-20 ppm ädelmetallpartiklar och med 1 % ädelmetallpartiklar räcker det med 0.1 bar H2 för att stoppa upplösningen.

  • 4.
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi (stängd 20110630).
    Radiation induced dissolution of model compounds for spent nuclear fuel: mechanistic understanding of oxidative dissolution and its inhibition2012Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This doctoral thesis is focused on radiation induced oxidative dissolution of UO2, Pd-doped UO2, SIMFUEL (as model substances for spent nuclear fuel) and UN (a possible future fuel) and inhibition of the oxidative dissolution.

    H2O2 is assumed to be the most important oxidant for spent nuclear fuel dissolution under deep repository conditions. The dissolution of uranium has been studied by oxidation by added H2O2 and by gamma irradiation in the presence and absence of carbonate.

    In carbonate free solutions very low amounts of uranium are dissolved from UO2 due to formation of metastudtite, UO4·2H2O on the UO2 surface which blocks the surface from further oxidation. Metastudite formation was confirmed with Raman spectroscopy.

    In the presence of carbonate, the concentration of dissolved uranium increases linearly over time for UO2 and UN, due to the complex formation between carbonate and oxidized uranium.

    For SIMFUEL a large fraction of H2O2 is consumed by catalytic decomposition under all conditions examined. This results in very low amounts of uranium released. Metastudtite formation was not observed on SIMFUEL.

    The oxidation during gamma radiolysis shows a larger difference in dissolution rates between UO2 and UN in carbonate solutions compared to upon oxidation by added H2O2. UN was found to have a lower dissolution rate, most probably because 50 % more oxidant is needed to reach the soluble U(VI).

    It was shown that the redox reactivity of UO2 appears to increase ~1.3 times, after being irradiated at doses > 40 kGy. The effect is permanent and delayed.

    The presence of sulfide shows an inhibiting effect on radiation induced dissolution due to scavenging of radiolytic oxidants and reduction of U(VI).

    The catalytic properties of Pd (as a model for the noble metal particles containing Mo, Ru, Tc, Pd and Rh, formed by the fission products) are examined. It was found that Pd has a catalytic effect on the reaction between H2O2 and H2 and the second order rate constant is determined to (2.1±0.1)x10-5 m s-1. The reaction between UO2 and H2O2 is catalyzed by Pd. Pd also has a catalytic effect on the reduction of U(VI) by H2 both in aqueous solution, rate constant (1.5±0.1)x10-5, and in the solid phase, rate constants 4x10-7 m s-1 and 7x10-6 m s-1 for pellets with 1 and 3 % Pd respectively. These values are very close to the diffusion limit for these systems. The catalytic effect was not influenced by the presence of sulfide. The catalytic effect in the solid phase reduction shows that the expected conditions in a deep repository, 40 bar H2 and 1 % noble metal particle content, is sufficient to stop the dissolution.

  • 5.
    Nilsson, Sara
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    H2O2 and radiation induced dissolution of a UN pellet in aqueous solution: a comparison with UO2 and SIMFUEL pellets2011Manuskript (preprint) (Annet vitenskapelig)
  • 6.
    Nilsson, Sara
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    H2O2 and radiation induced dissolution of UO2 and SIMFUEL pellets2011Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 410, nr 1-3, s. 89-93Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dissolution of the UO2 matrix is of major importance in the safety assessment of a future deep repository for spent nuclear fuel. The aim of this work is to elucidate if the observed differences in dissolution rates between SIMFUEL and UO2 can be attributed to differences in oxidant reactivity towards these two materials. To elucidate this, the oxidative dissolution of U(VI) and consumption of H2O2 have been studied for UO2 and SIMFUEL pellets under N-2 and H-2 atmosphere. The H2O2 and U(VI) concentrations have been measured as a function of reaction time. In addition, gamma-radiation induced dissolution UO2 and SIMFUEL pellets have been studied. The experiments show that while the reactivity of the two types of pellets towards H2O2 is almost identical and in good agreement with the previously determined rate constant for the reaction, the dissolution rates differ considerably. The significantly lower rate of dissolution of the SIMFUEL pellet is attributed to an increased fraction of catalytic decomposition of H2O2. The radiation chemical experiments reveal a similar but less pronounced difference between the two types of pellets. This implies that the relative impact of the radiolytic oxidants in radiation induced UO2 dissolution differs between a pure UO2 pellet and SIMFUEL

  • 7.
    Nilsson, Sara
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    On the catalytic effect of Pd(s) on the reduction of UO22+ with H-2 in aqueous solution2008Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 374, nr 1-2, s. 290-292Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The catalytic effect of Pd(s) (as a model for noble metal particles) on the reduction of UO22+ by H-2 has been studied experimentally. The experiments were performed in aqueous solution in an autoclave. The aqueous solutions were pressurized with H-2 or N-2 and the UO22+ concentration was measured as a function of time. The experiments clearly show that Pd catalyzes the reaction between UO22+ and H-2. The rate constant of the reaction was found to be close to diffusion controlled and independent of the H-2 pressure in the range 1.5-40 bar. The effect of a catalyzed reduction of U(VI) to U(IV) in the solid phase is also discussed.

  • 8.
    Nilsson, Sara
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    On the catalytic effects of UO2(s) and Pd(s) on the reaction between H2O2 and H-2 in aqueous solution2008Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 372, nr 2-3, s. 160-163Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The possible catalytic effects of UO2 and Pd (as a model for noble metal particles) on the reaction between H2O2 and H2 have been studied experimentally. The experiments were performed in aqueous solution using an autoclave. The aqueous solutions were pressurized with H2 or N2 and the H2O2 concentration was measured as a function of time. The experiments clearly showed that Pd catalyzes the reaction between H2O2 and H2 while UO2 has no catalytic effect. The rate constant of the reaction between H2O2 and H2 catalyzed by Pd was found to be close to diffusion controlled and independent of the H2 pressure in the range 1-40 bar. The impact of the catalytic effect on the reaction between H2O2 and H2 on spent nuclear fuel dissolution is, however, fairly small. Other possible effects of noble metal particles are also discussed, e.g. reduction of U(VI) to U(IV) in the liquid and solid phase.

  • 9.
    Roth, Olivia
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Radiation enhanced reactivity of UO22006Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 354, nr 1-3, s. 131-136Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pure UO2 is often used as a model compound when studying reactions of importance in a future deep repository for spent nuclear fuel. The reactivity of pure UO2 is not expected to be identical to the reactivity of the UO2-matrix of spent nuclear fuel for several reasons. One reason is that the spent fuel, due to the content of radionuclides, is continuously being self-irradiated. The aim of this study is to investigate how irradiation of solid UO2 surfaces affects their reactivity towards oxidants. The effect of irradiation (gamma or electrons) on the reaction between solid UO2 and MnO4- in aqueous solutions containing carbonate has been studied. It was found that irradiation with high doses (> 40 kGy) increased the reactivity of the UO2 to about 1.3 times the reactivity of unirradiated UO2.

  • 10.
    Sundin, Sara
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Dahlgren, Björn
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Roth, Olivia
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    H2O2 and radiation induced dissolution of UO2 and SIMFUEL in HCO3- deficient aqueous solution2013Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 443, nr 1-3, s. 291-297Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Understanding UO2 matrix dissolution is of major importance for the safety assessment of a future deep geological repository. Oxidative dissolution of UO2 and SIMFUEL pellets have been extensively studied in HCO3- solutions, while less is known about systems with no or very low HCO3- concentrations. The aim of this work is to elucidate the oxidative dissolution of UO2 and SIMFUEL pellets in HCO3- free solutions by studying the dissolution of U (VI) and consumption of H2O2 over time. The results are compared with previous experiments performed in HCO3- solutions. The oxidative dissolution rate is higher for the UO2 pellet in HCO3- compared to the other systems. It is evident that the kinetics of the reaction with H2O2 is qualitatively different for SIMFUEL in comparison with pure UO2. For the UO2 pellet in pure water, the presence of a secondary phase (meta) studtite, on the surface of the pellet is confirmed by Raman spectroscopy. The kinetic impact of the secondary phase is evaluated in separate UO2 powder experiments. The (meta) studtite (surface) precipitation leads to a slower release of uranium into the solution. Numerical simulations using experimentally determined rate constants are used to evaluate a simple mechanism of surface precipitation. The numerical results are in fair agreement with the experimental observations given certain criteria. In addition, the γ-radiation induced dissolution of UO 2 and SIMFUEL pellets were investigated in pure water, and compared with HCO3- systems. Also here the dissolution rate of uranium is higher for UO2 in HCO3- compared to pure water, while for SIMFUEL longer irradiation times are needed to observe any difference between pure and HCO3- containing water.

  • 11.
    Trummer, Martin
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi.
    On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel2008Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 378, nr 1, s. 55-59Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Radiation induced oxidative dissolution of UO2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H2O2 was used as a model for radiolytical oxidants (previous studies have shown that H2O2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H2O2 and HCO3- and the consumption of H2O2 and the dissolution of uranium were analyzed as a function of H2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO2 as well as reduction of surface bound oxidized UO2 by H2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H2 observed in several studies on spent nuclear fuel dissolution.

  • 12.
    Yang, Miao
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi (stängd 20110630).
    Barreiro Fidalgo, Alexandre
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi (stängd 20110630).
    Nilsson, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi (stängd 20110630).
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Kärnkemi (stängd 20110630).
    Inhibition of radiation induced dissolution of UO2 by sulfide: a comparision with the hydrogen effect2011Manuskript (preprint) (Annet vitenskapelig)
  • 13.
    Yang, Miao
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Barreiro Fidalgo, Alexandre
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sundin, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Jonsson, Mats
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Inhibition of radiation induced dissolution of UO2 by sulfide-A comparison with the hydrogen effect2013Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 434, nr 1-3, s. 38-42Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work we have studied the influence of H2S on radiation induced dissolution of spent nuclear fuel using simple model systems. The reaction between H2O2 and H2S/HS- has been studied experimentally as well as the effect of H2S/HS - on γ-radiation induced dissolution of a UO2 pellet. The experiments clearly show that the reaction of H2O 2 and H2S/HS- is fairly rapid and that H 2O2 and H2S/HS- stoichiometry is favorable for inhibition. Radiolysis experiments show that H2S/ HS- can effectively protect UO2 from oxidative dissolution. The effect depends on sulfide concentration in combination with dose rate. Autoclave experiments were also conducted to study the role of H 2S/HS- in the reduction of U(VI) in the presence and absence of H2 and Pd particles in anoxic aqueous solution. The aqueous solutions were pressurized with H2 or N2 and two different concentrations of H2S/HS- were used in the presence and absence of Pd. No catalytic effect of Pd on the U(VI) reduction by H2S/HS- could be found in N2 atmosphere. U(VI) reduction was found to be proportional to H2S/HS- concentration in H2 and N2 atmosphere. It is clearly shown the Pd catalyzed H2 effect is more powerful than the effect of H2S/HS-. H2S/HS- poisoning of the Pd catalyst is not observed under the present conditions.

1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf