Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Kudryavtsev, Daniil
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    The role of deep hydrocarbons in the global hydrocarbon budget2020Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Nowadays, the issue of global warming and related environmental problems got widespread awareness among scientific society, politics, the industry as well as it has affected our everyday life. The reason for such a negative impact on the atmosphere is attributed mainly to human activities. It is thought that one of the most dangerous greenhouse gases is carbon dioxide (CO2). Nevertheless, the problem of hydrocarbon emissions began to receive particular attention due to the exponential growth of methane emissions in the atmosphere. What is the reason for such behaviour and what about other hydrocarbons, first of all, ethane, propane and butane isomers? In this work, it was proposed that geological emissions, mainly the emission from the dissociation of natural gas hydrates is one of the main reasons for the dramatic rise in hydrocarbon emissions to the atmosphere. Natural gas hydrates are not only composed of methane and water cages but have in their structure a broad range of hydrocarbons, including ethane, propane, butanes and some others. 

    The purpose of this thesis is to investigate the sources of non-methane volatile hydrocarbons in the atmosphere, examine their impact on the environment and explore the correlation of hydrocarbon emissions with CO2 emissions. 

    To reveal the impact of natural gas hydrates to the hydrocarbon budget it was assumed, that hydrocarbons that are contributing to the natural gas hydrate formation have deep mantle origin. To confirm this hypotheses high-pressure high temperature investigation of propane and butanes were conducted. The results of this investigation are presented in this thesis. To model extreme thermobaric conditions the diamond-anvil cell technique with two-sided laser heating was used. The method of Raman spectroscopy was applied for the analysis. 

    The results received show that propane and butane isomers stable in the pressure  up to 40 GPa at ambient temperature. Propane remains stable at temperatures up to 900 K. At temperatures >900 K chemical transformations of propane are starting to occur producing mixture of light alkanes.

  • 2.
    Kudryavtsev, Daniil
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Dubrovinsky, Leonid
    University of Bayreuth (Bayreth's geological institute) .
    Raman high-pressure study of butane isomers up to 40 GPa2018Inngår i: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 8, nr 11, artikkel-id 115104Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Raman spectroscopy studies on n and i-butane were performed at pressures of up to 40 GPa at ambient temperatures using the DAC technique. Normal butane undergoes two phase transitions at 1.9(5) GPa and 2.9(5) GPa and isobutane at 2.7(5) GPa and 3.5(5) GPa. These phase transitions were identified based on observations of the splitting Raman modes and the appearance or disappearance of particular Raman peaks. Our results demonstrate the complex, high-pressure behavior of butane isomers.

  • 3.
    Kudryavtsev, Daniil
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Dubrovinsky, Leonid
    University of Bayreuth (Bayreth's geological institute) .
    Serovaiskii, Aleksandr
    Gubkin University of oil and gas (Moscow).
    High-pressure chemistry of propane2020Inngår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study is a comprehensive research of the propane's high-pressure and high-pressure high temperature behaviour using diamond-anvill cell technique combined with vibrational spectroscopy. As we have found, propane while being exposed to the high pressures (5-40 GPa) could exhibit three solid-solid phase transitions. With the applyimg of laser heating technique, propane could react with the formation of various hydrocarbon compounds and carbon. At temperatures less than 900 K and in the range of pressures from 3 to 22 GPa propane remains stable.

    Fulltekst tilgjengelig fra 2020-07-22 19:32
  • 4.
    Kudryavtsev, Daniil
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Serovaiskii, Aleksandr Yu
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Mukhina, Elena
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Kolesnikov, Anton
    Gasharova, Biliana
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Dubrovinsky, Leonid
    Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa2017Inngår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 121, nr 32, s. 6004-6011Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Raman and IR spectroscopy studies on propane were performed at pressures of up to 40 GPa at ambient temperatures using the diamond anvil cell technique. Propane undergoes three phase transitions at 6.4(5), 14.5(5), and 26.5(5) GPa in Raman spectroscopy and at 7.0(5), 14.0(5), and 27.0(5) GPa in IR spectroscopy. The phase transitions were identified using the Raman and IR splitting modes and the appearance or disappearance of peaks, which clearly corresponded to the changes in the frequencies of the modes as the pressure changed. Our results demonstrate the complex high-pressure behavior of solid propane.

  • 5.
    Kudryavtsev, Danil
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fedotenko, Timofey
    University of Bayreuth (Bayreth's geological institute) .
    Koemets, Egor
    University of Bayreuth (Bayreth's geological institute) .
    Khandarkhaeva, Saiana
    University of Bayreuth (Bayreth's geological institute) .
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Dubrovinsky, Leonid
    University of Bayreuth (Bayreth's geological institute) .
    Raman Spectroscopy Study on Chemical Transformations of Propane at High Temperatures and High Pressures2020Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 10, nr 1483Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study is devoted to the detailed in situ Raman spectroscopy investigation of propane C3H8 in laserheated diamond anvil cells in the range of pressures from 3 to 22 GPa and temperatures from 900 to 3000 K. We show that propane, while being exposed to particular thermobaric conditions, could react, leading to the formation of hydrocarbons, both saturated and unsaturated as well as soot. Our results suggest that propane could be a precursor of heavy hydrocarbons and will produce more than just sooty material when subjected to extreme conditions. These results could clarify the issue of the presence of heavy hydrocarbons in the Earth’s upper mantle.

  • 6.
    Mukhina, Elena
    et al.
    KTH.
    Kolesnikov, A
    KTH.
    Kudryavtsev, D
    KTH.
    Kutcherov, V
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Deep genesis of hydrocarbons under oxidized conditionsInngår i: Artikkel i tidsskrift (Fagfellevurdert)
  • 7.
    Mukhina, Elena
    et al.
    KTH.
    Kudryavtsev, D
    KTH.
    Kolesnikov, A
    Serovaisky, A
    KTH.
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    The influence of a sample container material on high pressure formation of hydrocarbonsInngår i: Artikkel i tidsskrift (Fagfellevurdert)
  • 8.
    Serovaiskii, Aleksandr
    et al.
    Gubkin Russian State Univ Oil & Gas, Natl Res Univ, Dept Phys, Leniskiy Ave 65-1, Moscow 119991, Russia..
    Mukhina, Elena
    Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia..
    Dubrovinsky, Leonid
    Univ Bayreuth, Bayer Geoinst, Univ Str 30, D-95440 Bayreuth, Germany..
    Chernoutsan, Aleksey
    Gubkin Russian State Univ Oil & Gas, Natl Res Univ, Dept Phys, Leniskiy Ave 65-1, Moscow 119991, Russia..
    Kudriavtcev, Danil
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    McCammon, Catherine
    Univ Bayreuth, Bayer Geoinst, Univ Str 30, D-95440 Bayreuth, Germany..
    Aprilis, Georgios
    Univ Bayreuth, Lab Crystallog, Mat Phys & Technol Extreme Condit, D-95440 Bayreuth, Germany..
    Kupenko, Ilya
    Univ Munster, Inst Mineral Westfalische Wilhelms, Corrensstr 24, D-48149 Munster, Germany..
    Chumakov, Aleksandr
    ESRF European Synchrotron, CS40220, F-38043 Grenoble 9, France..
    Hanfland, Michael
    ESRF European Synchrotron, CS40220, F-38043 Grenoble 9, France..
    Kutcherov, Vladimir G.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik. KTH, Skolan för industriell teknik och management (ITM), Industriell ekonomi och organisation (Inst.). Department of Physics, Gubkin Russian State University of Oil and Gas (National Research University), Leniskiy avenue 65/1, Moscow, 119991, Russian Federation.
    Fate of Hydrocarbons in Iron-Bearing Mineral Environments during Subduction2019Inngår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 9, nr 11, artikkel-id 651Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Subducted sediments play a key role in the evolution of the continental crust and upper mantle. As part of the deep carbon cycle, hydrocarbons are accumulated in sediments of subduction zones and could eventually be transported with the slab below the crust, thus affecting processes in the deep Earth's interior. However, the behavior of hydrocarbons during subduction is poorly understood. We experimentally investigated the chemical interaction of model hydrocarbon mixtures or natural oil with ferrous iron-bearing silicates and oxides (representing possible rock-forming materials) at pressure-temperature conditions of the Earth's lower crust and upper mantle (up to 2000(+/- 100) K and 10(+/- 0.2) GPa), and characterized the run products using Raman and Mossbauer spectroscopies and X-ray diffraction. Our results demonstrate that complex hydrocarbons are stable on their own at thermobaric conditions corresponding to depths exceeding 50 km. We also found that chemical reactions between hydrocarbons and ferrous iron-bearing rocks during slab subduction lead to the formation of iron hydride and iron carbide. Iron hydride with relatively low melting temperature may form a liquid with negative buoyancy that could transport reduced iron and hydrogen to greater depths.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf