Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 1194
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbasi Hoseini, A.
    et al.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Andersson, H. I.
    Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow2015Ingår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 76, s. 13-21Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Combined Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) measurements have been performed in dilute suspensions of rod-like particles in wall turbulence. PIV results for the turbulence field in the water table flow apparatus compared favorably with data from Direct Numerical Simulations (DNS) of channel flow turbulence and the universality of near-wall turbulence justified comparisons with DNS of fiber-laden channel flow. In order to examine any shape effects on the dynamical behavior of elongated particles in wall-bounded turbulent flow, fibers with three different lengths but the same diameter were used. In the logarithmic part of the wall-layer, the translational fiber velocity was practically unaffected by the fiber length l. In the buffer layer, however, the fiber dynamics turned out to be severely constrained by the distance z to the wall. The short fibers accumulated preferentially in low-speed areas and adhered to the local fluid speed. The longer fibers (l/z > 1) exhibited a bi-modal probability distribution for the fiber velocity, which reflected an almost equal likelihood for a long fiber to reside in an ejection or in a sweep. It was also observed that in the buffer region, high-speed long fibers were almost randomly oriented whereas for all size cases the slowly moving fibers preferentially oriented in the streamwise direction. These phenomena have not been observed in DNS studies of fiber suspension flows and suggested l/z to be an essential parameter in a new generation of wall-collision models to be used in numerical studies.

  • 2.
    af Klinteberg, Ludvig
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lindbo, Dag
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Tornberg, Anna-Karin
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant2014Ingår i: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 101, s. 50-63Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The flow behavior of many multiphase flow applications is greatly influenced by wetting properties and the presence of surfactants. We present a numerical method for two-phase flow with insoluble surfactants and contact line dynamics in two dimensions. The method is based on decomposing the interface between two fluids into segments, which are explicitly represented on a local Eulerian grid. It provides a natural framework for treating the surfactant concentration equation, which is solved locally on each segment. An accurate numerical method for the coupled interface/surfactant system is given. The system is coupled to the Navier-Stokes equations through the immersed boundary method, and we discuss the issue of force regularization in wetting problems, when the interface touches the boundary of the domain. We use the method to illustrate how the presence of surfactants influences the behavior of free and wetting drops.

  • 3.
    af Klinteberg, Ludvig
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Tornberg, Anna-Karin
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    A fast integral equation method for solid particles in viscous flow using quadrature by expansion2016Ingår i: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 326, s. 420-445Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.

  • 4. Agarwal, A.
    et al.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Zaki, T. A.
    Transition to Turbulence in Viscoelastic Channel Flow2015Ingår i: Procedia IUTAM, Elsevier, 2015, s. 519-526Konferensbidrag (Refereegranskat)
    Abstract [en]

    The influence of viscoelasticity on bypass transition to turbulence in channel flow is studied using data from direct numerical simulations by Agarwal et al. (2014) 1. The initial field is a superposition of a laminar base state and a localized disturbance. Relative to the Newtonian conditions, the polymeric FENE-P flow delays the onset of transition and extends its duration. The former effect is due to a weakening of the pre-transitional disturbance field, while the prolonged transition region is due to a slower spreading rate of the turbulent spots. Once turbulence occupies the full channel, a comparison of the turbulence fields shows that energetic flow structures are longer and wider in the polymeric flow. The final turbulent state is compared to elasto-inertial turbulence (EIT), where the polymer conformation field takes the form of elongated sheets with wide spanwise extent. © 2015 The Authors.

  • 5. Agarwal, Akshat
    et al.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Zaki, Tamer A.
    Linear and nonlinear evolution of a localized disturbance in polymeric channel flow2014Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 760, s. 278-303Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The evolution of an initially localized disturbance in polymeric channel flow is investigated, with the FENE-P model used to characterize the viscoelastic behaviour of the flow. In the linear growth regime, the flow response is stabilized by viscoelasticity, and the maximum attainable disturbance energy amplification is reduced with increasing polymer concentration. The reduction in the energy growth rate is attributed to the polymer work, which plays a dual role. First, a spanwise polymer-work term develops, and is explained by the tilting action of the wall-normal voracity on the mean streamwise conformation tensor. This resistive term weakens the spanwise velocity perturbation thus reducing the energy of the localized disturbance. The second action of the polymer is analogous, with a wall-normal polymer work term that weakens the vertical velocity perturbation. Its indirect effect on energy growth is substantial since it reduces the production of Reynolds shear stress and in turn of the streamwise velocity perturbation, or streaks. During the early stages of nonlinear growth, the dominant effect of the polymer is to suppress the large-scale streaky structures which are strongly amplified in Newtonian flows. As a result, the process of transition to turbulence is prolonged and, after transition, a drag-reduced turbulent state is attained.

  • 6.
    Ahlberg, Charlotte
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Soderberg, L. Daniel
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    SELF-ORGANIZATION OF FIBERS IN A SUSPENSION BETWEEN TWO COUNTER-ROTATING DISCS2009Ingår i: PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C, NEW YORK: AMER SOC MECHANICAL ENGINEERS , 2009, s. 585-592Konferensbidrag (Refereegranskat)
    Abstract [en]

    The behavior of fibers suspended in a flow between two flat counter-rotating discs has been studied experimentally. Captured images of the fibers in the flow were analyzed by steerable filters, to extract positions and orientations of the fibers. Experiments were performed for gaps between the discs of less than one fiber length, and for equal absolute values of the angular velocities for the discs. The length-to-diameter ratio of the fibers was approximately 14. During certain conditions, the fibers organized themselves in a distinct manner, which we will denote as fiber trains, in which three or more fibers are aligned next to each other, at the same radial position, with a short fiber-to-fiber distance. The direction of the individual fibers is radial and the direction of the whole train is tangential. Trains containing more than 60 fibers have been observed and are quite impressing.

  • 7.
    Albernaz, Daniel
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Do, Quang Minh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Amberg, Gustav
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection2015Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 91, nr 4, artikel-id 043012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass, momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a nonideal equation of state. First, numerical simulations are compared to the D-2 law for a vaporizing static droplet and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake interaction and local mass flux are discussed in detail.

  • 8.
    Albernaz, Daniel L.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Do-Quang, Minh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Amberg, Gustav
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lattice Boltzmann Method for the evaporation of a suspended droplet2013Ingår i: Interfacial phenomena and heat transfer, ISSN 2167-857X, Vol. 1, s. 245-258Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we consider a thermal multiphase lattice Boltzmann method (LBM) to investigate the heating and vaporization of a suspended droplet. An important benefit from the LBM is that phase separation is generated spontaneously and jump conditions for heat and mass transfer are not imposed. We use double distribution functions in order to solve for momentum and energy equations. The force is incorporated via the exact difference method (EDM) scheme where different equations of state (EOS) are used, including the Peng-Robinson EOS. The equilibrium and boundary conditions are carefully studied. Results are presented for a hexane droplet set to evaporate in a superheated gas, for static condition and under gravitational effects. For the static droplet, the numerical simulations show that capillary pressure and the cooling effect at the interface play a major role. When the droplet is convected due to the gravitational field, the relative motion between the droplet and surrounding gas enhances the heat transfer. Evolution of density and temperature fields are illustrated in details.

  • 9.
    Albernaz, Daniel L.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Do-Quang, Minh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Hermanson, J. C.
    Amberg, Gustav
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Droplet deformation and heat transfer in isotropic turbulence2017Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 820, s. 61-85Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The heat and mass transfer of deformable droplets in turbulent flows is crucial. to a wide range of applications, such as cloud dynamics and internal combustion engines. This study investigates a single droplet undergoing phase change in isotropic turbulence using numerical simulations with a hybrid lattice Boltzmann scheme. Phase separation is controlled by a non-ideal equation of state and density contrast is taken into consideration. Droplet deformation is caused by pressure and shear stress at the droplet interface. The statistics of thermodynamic variables are quantified and averaged over both the liquid and vapour phases. The occurrence of evaporation and condensation is correlated to temperature fluctuations, surface tension variation and turbulence intensity. The temporal spectra of droplet deformations are analysed and related to the droplet surface area. Different modes of oscillation are clearly identified from the deformation power spectrum for low Taylor Reynolds number Re, whereas nonlinearities are produced with the increase of Re A, as intermediate frequencies are seen to overlap. As an outcome, a continuous spectrum is observed, which shows a decrease in the power spectrum that scales as similar to f(-3) Correlations between the droplet Weber number, deformation parameter, fluctuations of the droplet volume and thermodynamic variables are also developed.

  • 10.
    Albernaz, Daniel L.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Do-Quang, Minh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Hermanson, J. C.
    Amberg, Gustav
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Thermodynamics of a real fluid near the critical point in numerical simulations of isotropic turbulence2016Ingår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 28, nr 12, artikel-id 125105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the behavior of a fluid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent flow with an ideal gas. The primary focus of this work is to analyze fluctuations of thermodynamic variables (pressure, density, and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. Fluctuations in pressure, density, and temperature increase, followed by changes in their respective probability density functions. Due to the non-linearity of the EOS, it is seen that variances of density and temperature and their respective covariance are equally important close to the critical point. Unlike the ideal EOS case, significant differences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature, and kinetic energy.

  • 11.
    Alenius, Emma
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Fuchs, Laszlo
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    LES of Acoustic-Flow Interaction at an Orifice Plate2012Ingår i: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The scattering of plane waves by a thick orifice plate, placed in a circular or square duct with flow, is studied through Large Eddy Simulation. The scattering matrix is computed and compared to measurements, showing reasonably good agreement except around one frequency ($St \approx 0.4$). Here a stronger amplification of acoustic energy is observed in the circular duct simulations than in the measurements and the square duct simulations. In order to improve the understanding of the interaction between an incoming wave, the flow, and the plate, a few frequencies are studied in more detail. A Dynamic Mode Decomposition is performed to identify flow structures at significant frequencies. This shows that the amplification of acoustic energy occurs at the frequency where the jet in the circular duct has an axisymmetric instability. Furthermore, the incoming wave slightly amplifies this instability, and suppresses background flow fluctuations.

  • 12.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Imayama, Shintaro
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca J.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. University of Cambridge, United Kingdom .
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Turbulent boundary layers over flat plates and rotating disks-The legacy of von Karman: A Stockholm perspective2013Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 40, s. 17-29Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many of the findings and ideas of von Karman are still of interest to the fluid dynamics community. For instance, his result that the mean velocity distribution in turbulent flows has a logarithmic behavior with respect to the distance from the centreline is still a cornerstone for everybody working in wall-bounded turbulence and was first presented to an international audience in Stockholm at the Third International Congress for Applied Mechanics in 1930. In this paper we discuss this result and also how the so-called von Karman constant can be determined in a new simple way. We also discuss the possibility of a second (outer) maximum of the streamwise velocity fluctuations, a result that was implicit in some of the assumptions proposed by von Karman.

  • 13.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca J.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. University of Cambridge, United Kingdom .
    Rotation Effects on Wall-Bounded Flows: Some Laboratory Experiments2014Ingår i: Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, Wiley-Blackwell, 2014, s. 83-100Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    This chapter focuses on three different categories: (1) system rotation vector parallel to mean-flow vorticity; (2) flows set up by the rotation of one or more boundaries; and (3) system rotation aligned with the mean-flow direction. The flows in the different categories above differ with respect to their geometry but, more importantly, in how rotation affects them. The chapter focuses on three different flows that are relatively amenable to laboratory investigation, one from each category described above: One is plane Couette flow undergoing system rotation about an axis normal to the mean flow, another is the von Kármán boundary layer flow, and the third is axially rotating pipe flow. It defines important nondimensional parameters that govern them and discuss some of their interesting flow features in various parameter ranges. Various experimental realizations of the three different flow systems are described and considerations and limitations regarding the laboratory systems are discussed.

  • 14.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the "outer" peak2011Ingår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 23, nr 4, s. 041702-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One recent focus of experimental studies of turbulence in high Reynolds number wall-bounded flows has been the scaling of the root mean square of the fluctuating streamwise velocity, but progress has largely been impaired by spatial resolution effects of hot-wire sensors. For the near-wall peak, recent results seem to have clarified the controversy; however, one of the remaining issues in this respect is the emergence of a second (so-called outer) peak at high Reynolds numbers. The present letter introduces a new scaling of the local turbulence intensity profile, based on the diagnostic plot by Alfredsson and Orlu [Eur. J. Mech. B/Fluids 42, 403 (2010)], which predicts the location and amplitude of the "outer" peak and suggests its presence as a question of sufficiently large scale separation.

  • 15.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH Mech, Linne FLOW Ctr, SE-10044 Stockholm, Sweden..
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Large-Eddy BreakUp Devices - a 40 Years Perspective from a Stockholm Horizon2018Ingår i: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 100, nr 4, s. 877-888Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the beginning of the 1980's Large Eddy BreakUp (LEBU) devices, thin plates or airfoils mounted in the outer part of turbulent boundary layers, were shown to be able to change the turbulent structure and intermittency as well as reduce turbulent skin friction. In some wind-tunnel studies it was also claimed that a net drag reduction was obtained, i.e. the reduction in skin-friction drag was larger than the drag on the devices. However, towing-tank experiments with a flat plate at high Reynolds numbers as well as with an axisymmetric body showed no net reduction, but instead an increase in total drag. Recent large-eddy simulations have explored the effect of LEBUs on the turbulent boundary layer and evaluations of the total drag show similar results as in the towing tank experiments. Despite these negative results in terms of net drag reduction, LEBUs manipulate the boundary layer in an interesting way which explains why they still attract some interest. The reason for the positive results in the wind-tunnel studies as compared to drag measurements are discussed here, although no definite answer for the differences can be given.

  • 16.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    The diagnostic plot - a litmus test for wall bounded turbulence data2010Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 29, nr 6, s. 403-406Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A diagnostic plot is suggested that can be used to judge wall bounded turbulence data of the mean and the rms of the streamwise velocity in terms of reliability both near the wall, around the maximum in the rms as well as in the outer region. The important feature of the diagnostic plot is that neither the wall position nor the friction velocity needs to be known, since it shows the rms value as a function of the streamwise mean velocity, both normalized with the free stream velocity. One must remember, however, that passing the test is a necessary, but not sufficient condition to prove good data quality.

  • 17.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Kurian, Thomas
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Fransson, Jens H. M.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Segalini, A.
    Rüedi, Jean-Daniel
    Talamelli, Alessandro
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    The diagnostic plot: a new way to appraise turbulent boundary-layer data2009Ingår i: ADVANCES IN TURBULENCE XII: PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE / [ed] Eckhardt, B., 2009, Vol. 132, s. 609-612Konferensbidrag (Refereegranskat)
  • 18.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity2011Ingår i: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 51, nr 1, s. 271-280Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In experiments using hot wires near the wall, it is well known that wall interference effects between the hot wire and the wall give rise to errors, and mean velocity data from the viscous sublayer can usually not be used to determine the wall position, nor the friction velocity from the linear velocity distribution. Here, we introduce a new method that takes advantage of the similarity of the probability density distributions (PDF) or rather the cumulative distribution functions (CDF) in the near-wall region. By using the velocity data in the CDF in a novel way, it is possible to circumvent the problem associated with heat transfer to the wall and to accurately determine both the wall position and the friction velocity. Prior to its exploitation, the self-similarity of the distribution functions of the streamwise velocity fluctuations within the viscous sublayer is established, and it is shown that they can accurately be described by a lognormal distribution.

  • 19.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    A new formulation for the streamwise turbulence intensity distribution2011Ingår i: 13th European Turbulence Conference (ETC13): Wall-Bounded Flows And Control Of Turbulence, Institute of Physics Publishing (IOPP), 2011, s. 022002-Konferensbidrag (Refereegranskat)
    Abstract [en]

    Numerical and experimental data from zero pressure-gradient turbulent boundary layers over smooth walls have been analyzed by means of the so called diagnostic plot introduced by Alfredsson & Orlu [Eur. J. Fluid Mech. B/Fluids, 4 2, 403 (2010)]. In the diagnostic plot the local turbulence intensity is shown as a function of the local mean velocity normalized with a reference velocity scale. In the outer region of the boundary layer a universal linear decay of the turbulence intensity is observed independent of Reynolds number. The deviation from this linear region appears in the buffer region and seems to be universal when normalized with the friction velocity. Therefore, a new empirical fit for the streamwise velocity turbulence intensity distribution is proposed and the results are compared with up to date reliable high-Reynolds number experiments and extrapolated towards Reynolds numbers relevant to atmospherical boundary layers.

  • 20.
    Alfredsson, P. Henrik
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows2012Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 36, s. 167-175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The distribution of the streamwise velocity turbulence intensity has recently been discussed in several papers both from the viewpoint of new experimental results as well as attempts to model its behavior. In the present paper numerical and experimental data from zero pressure-gradient turbulent boundary layers, channel and pipe flows over smooth walls have been analyzed by means of the so called diagnostic plot introduced by Alfredsson & ÖrlÌ [P.H. Alfredsson, R. ÖrlÌ, The diagnostic plot-a litmus test for wall bounded turbulence data, Eur. J. Mech. B Fluids 29 (2010) 403-406]. In the diagnostic plot the local turbulence intensity is plotted as function of the local mean velocity normalized with a reference velocity scale. Alfredsson et al. [P.H. Alfredsson, A. Segalini, R. ÖrlÌ, A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the outer peak, Phys. Fluids 23 (2011) 041702] observed that in the outer region of the boundary layer a universal linear decay of the turbulence intensity independent of the Reynolds number exists. This approach has been generalized for channel and pipe flows as well, and it has been found that the deviation from the previously established linear region appears at a given wall distance in viscous units (around 120) for all three canonical flows. Based on these results, new empirical fits for the streamwise velocity turbulence intensity distribution of each canonical flow are proposed. Coupled with a mean streamwise velocity profile description the model provides a composite profile for the streamwise variance profile that agrees nicely with existing numerical and experimental data. Extrapolation of the proposed scaling to high Reynolds numbers predicts the emergence of a second peak of the streamwise variance profile that at even higher Reynolds numbers overtakes the inner one.

  • 21.
    Alghalibi, Dhiya
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. Kufa Univ, Coll Engn, Al Najaf, Iraq..
    Numerical study of particle suspensions in Newtonian and non-Newtonian fluids2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Suspensioner av solida eller deformerbara partiklar iviskösa vätskor är av vetenskapligt och teknologiskt intresse för ett stortspann av applikationer. Några typiska exempel inkluderar pyroklastiskaflöden från vulkaner, sedimenterande flöden i flodbäddar,livsmedelsindustrin, oljebrunnsborrning, blodflödet i människokroppen samtrörelsen hos mikroorganismer (till exempel plankton) i havet. I dessapartikelflöden kan den bärande vätskan ha ett icke-elastiskt ellerviskoelastiskt icke-Newtonskt beteende. Att förstå beteendet hos dessasuspensioner är en mycket svår uppgift. Komplexiteten hos, och utmaningenmed, multifasflöden beror till största delen på det stora antal styrandeparametrar. Dessa inkluderar de fysikaliska partikelegenskaperna (tillexempel form, storlek, styvhet, densitetsskillnad mot det bärande medietsamt volymfraktion), den stora mängden interaktioner mellan partiklarnasamt egenskaperna hos den bärande fluiden (Newtonsk eller icke-Newtonsk).Variationer i vardera av dessa parametrar kan leda till stora kvantitativaoch kvalitativa förändringar i suspensionens beteende och kan påverka denövergripande dynamiken på många, ibland överraskande, sätt. Målet meddenna avhandling är därför att ge en djupare förståelse avpartikelsuspensioner i laminära, Newtonska och icke-Newtonska(icke-elastiska och/eller visko-elasiska), flöden för ett stort spann avparametrar. För detta används ett effektivt och precist simuleringsverktygsom tillåter partikelupplösta, numeriska simuleringar av sfäriskapartiklar. Koden är baserad på Immersed boundary-metodiken (IBM) förfluid-strukturinteraktion med lubrikations-, friktions- ochkollisionsmodeller för partikel-partikel- och partikel-vägginteraktioner.Både icke-elastiska (Carreau och power-law) och viskoelastiska (Oldroyd-Boch Giesekus) modeller betraktades för att, i isolering, undersökaeffekterna av skjuvförtunnande, skjuvförtjockande, viskoelasticitet samtkombinationen av skjuvförtunning och viskoelastik, vilka vanligen förekommerhos icke-Newtonska fluider. Därutöver användes en Eulerisk numeriskalgoritm baserad på en en-kontinuumformulering för att undersöka fallet meden hyperelastisk, neo-Hookisk och deformerbar partikel i en Newtonsk vätska.

    Till att börja med undersöks suspensioner av solida sfärer i Netwonska,skjuvförtunnande samt skjuvförtjockande fluider i ett skjuvflöde genereratmellan två väggar som rör sig i motsatt riktning. Varierandevolymfraktioner (av partiklar) och partikel-Reynoldstal (dvs inkluderandeav fluidtröghet) betraktas. Resultaten visar att den dimensionslösarelativa viskositeten hos suspensionen och medelvärdet av den lokalaskjuvhastigheten kan väl förutsägas av homogeniseringsteori, speciellttillförlitligt vid låga partikelkoncentrationer. Därutöver visas att deneffektiva viskositeten hos dessa suspensioner avviker från suspensioner iStokesflöde när flödeströghet inkluderas.

    Därutöver undersöktes rollen hos elasticitet, skjuvförtunnande samtkombinerad skjuvförtunnande och viskoelasticitet i det bärande mediet påett linjärt Couetteflöde med densitetsmatchade, rigida och sfäriskapartiklar. Den effektiva viskositeten växer monotont medpartikelvolymfraktionen och alla icke-Newtonska fall uppvisar en lägreeffektiv viskositet än de motsvarande Newtonska fallen. Det visas även attelastiska effekter dominerar vid låg elasticitet medan skjuvförtunnandeeffekter dominerar vid höga skjuvhastigheter. Dessa variationer i effektivviskositet beror främst på förändringar i den partikelinduceradekomponenten av skjuvspänningen.

    Efter detta studeras sedimentering av sfäriska partiklar i ettstillastående flöde mellan två väggar. Både Newtonska och skjuvförtunnandevätskor betraktas vid tre olika partikelvolymfraktioner. Det visas attmedelvärdet av sedimenteringshastigheten minskar med partikelkoncentrationpå grund av den hindrande effekten av omgivande partiklar. Därutöver ärmedelsedimentationshastigheten alltid större i en skjuvförtunnande än enNewtonsk vätska på grund av reduktionen i lokal fluidviskositet runtpartiklarna, vilket leder till en lägre motståndskraft.

    Slutligen undersöks även tröghetsinducerad migration av hyperelastiska ochdeformerbara partiklar i ett laminärt rörflöde. Olika flöden och nivåer avelasticitet hos partikeln betraktas. Partikeldeformation och lateralrörelse observeras för partiklarna när de rör sig nedströms längs röret,vilket leder till att partiklarna alltid finner en stabil position vidrörets centerlinje.

  • 22.
    Alghalibi, Dhiya
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. College of Engineering, University of Kufa, Al Najaf, Iraq.
    Fornari, Walter
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Sedimentation of finite-size particles in quiescent wall-bounded shear-thinning and Newtonian fluidsIngår i: Journal of International Journal of Multiphase Flow, ISSN 0301-9322Artikel i tidskrift (Refereegranskat)
  • 23.
    Alghalibi, Dhiya
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. Kufa Univ, Coll Engn, Al Najaf, Iraq..
    Lashgari, Iman
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, L.uca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hormozi, Sarah
    Ohio Univ, Dept Mech Engn, Athens, OH 45701 USA..
    Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids2018Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 852, s. 329-357Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions (0.1 <= Phi <= 0.4) and particle Reynolds numbers (0.1 <= Re<INF>p</INF><INF></INF> <= 10). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal Phi. This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter's mean value with the values estimated from the homogenisation theory of Chateau et al. (J. Rheol., vol. 52, 2008, pp. 489-506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the Re<INF>p</INF>. The wide spectrum of the local shear rate and its dependency on Phi and Re<INF>p</INF> point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, O(Re<INF>p</INF>) similar to 10.

  • 24.
    Alghalibi, Dhiya
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. College of Engineering, University of Kufa, Al Najaf, Iraq.
    Rosti, Marco E.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Inertial migration of a deformable particle in pipe flow2019Ingår i: Physical Review Fluids, E-ISSN 2469-990X, Vol. 4, nr 10, artikel-id 104201Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We perform fully Eulerian numerical simulations of an initially spherical hyperelastic particle suspended in a Newtonian pressure-driven flow in a cylindrical straight pipe. We study the full particle migration and deformation for different Reynolds numbers and for various levels of particle elasticity, to disentangle the interplay of inertia and elasticity on the particle focusing. We observe that the particle deforms and undergoes a lateral displacement while traveling downstream through the pipe, finally focusing at the pipe centerline. We note that the migration dynamics and the final equilibrium position are almost independent of the Reynolds number, while they strongly depend on the particle elasticity; in particular, the migration is faster as the elasticity increases (i.e., the particle is more deformable), with the particle reaching the final equilibrium position at the centerline in shorter times. Our simulations show that the results are not affected by the particle initial conditions, position, and velocity. Finally, we explain the particle migration by computing the total force acting on the particle and its different components, viscous and elastic.

  • 25.
    Alghalibi, Dhiya
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. College of Engineering, Kufa University, Al Najaf, Iraq.
    Rosti, Marco E.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Tidigare Institutioner (före 2005), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Interface-resolved simulations of particle suspensions in visco-elastic carrier fluidsIngår i: Journal of Fluid Mechanics, ISSN 0022-1120, EISSN 1469-7645Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the rheology of a suspension of neutrally buoyant rigid particles subject touniform shear in different kinds of non-Newtonian fluids, chosen in order to disentanglethe effect of elasticity and shear thinning on the macroscopic system behavior. In par-ticular, we adopt the inelastic Carreau, viscoelastic Oldroyd-B and Giesekus models forthe carrier fluid. The rheology of the suspension is analyzed for a wide range of particlevolume fractions, Weissenberg and Reynolds numbers, comparing the results with thoseobtained for a Newtonian carrier fluid. We report here that the effective viscosity per-taining all the non-Newtonian cases is always lower than that of the suspension in theNewtonian carrier fluid and grows monotonically with the solid volume fraction. Theshear-thinning viscoelastic Giesekus fluid behaves similarly to the Oldroyd-B fluid at lowWeissenberg numbers and to the Carreau fluid at high Weissenberg numbers, indicatingthat elastic effects dominate at low Weissenberg and shear thinning is predominant athigh Weissenberg number. These variations in the effective viscosity are mainly due tochanges in the particle induced shear stress component. These data show that, at highshear rates, a viscoelastic carrier fluid can be modelled as a simple shear-thinning fluidfor which theoretical closures exists, while new models are needed at low Weissenbergnumbers to account for elastic effects such as decreased particle stress. Finally, when theinertia is increased, the suspension effective viscosity grows with the particle Reynoldsnumber at the same rate as in a Newtonian fluid for the Oldroyd-B case, while in ashear-thinning fluid the growth is less than in the Newtonian fluid. Also in the presenceof inertia, therefore, the shear-thinning behaviour dominates the suspension dynamics atrelatively high values of the imposed shear rate and elasticity effects saturate.

  • 26.
    Allam, Sabry
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. Hellwan University, Egypt .
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Experimental characterization of acoustic liners with extended reaction2008Ingår i: 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008Konferensbidrag (Refereegranskat)
    Abstract [en]

    Suppressing of jet engine noise by inlet and exhaust duct liners and internal combustion engine (ICE) noise by intake and exhaust systems is an important part of developing environmentally acceptable vehicles. The acoustic liner is designed to provide an impedance boundary condition in the engine duct that reduces the propagation of engine noise through the duct. An accurate impedance boundary condition is necessary to optimally suppress the noise at different conditions. The goal of the research presented in this paper is to present a new technique to Educe and characterize the acoustic liner impedance for cases with extended reaction. This technique is depending on comparing both the measured and predicted 2-port transfer matrices. The measurement of the transfer matrix is performed using the two microphone technique, while the prediction of the transfer matrix is obtained assuming plane waves in the inner pipe and outer chamber coupled by a perforated wall impedance. By using a regression process the unknown wall impedance is then educed. The method is applied to investigate the effect of flow on the impedance of so called Micro-perforated panels (MPP). A MPP consists of a panel (here a plate made of Al or steel) with small perforations distributed over its surface. When these perforations are of sub-millimeter size they provide by themselves enough acoustic resistance and low acoustic mass reactance necessary for a wideband absorber.

  • 27. Altimira, M.
    et al.
    Fuchs, Laszlo
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Numerical investigation of throttle flow under cavitating conditions2015Ingår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 75, s. 124-136Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present paper shows the importance of the resolution of large unsteady flow structures in numerical simulations of cavitating flows. Three-dimensional simulations of the flow through a throttle geometry representative for fuel injectors have been performed to characterise the inception and development of cavitation, adopting the implicit Large Eddy Simulation approach. The two-phase flow has been handled by the Volume of Fluid method; whilst the simplified Rayleigh equation has been adopted to handle bubble dynamics. The mathematical model has been solved in the open source C++ toolbox OpenFOAM 2.0.1. Results obtained with the mathematical model are compared with those from RANS-based simulations and validated against experimental measurements. The performed Large Eddy Simulations not only are able to reproduce vortex cavitation, but also give further insight into the complex interaction between cavitation and turbulence through the assessment of the different terms of the vorticity equation.

  • 28. Alveroglu, B.
    et al.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Garrett, S. J.
    An energy analysis of convective instabilities of the Bödewadt and Ekman boundary layers over rough surfaces2017Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 61, s. 310-315Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    ⋯ An energy balance equation for the three-dimensional Bödewadt and Ekman layers of the so called "BEK family" of rotating boundary-layer flows is derived. A Chebyshev discretization method is used to solve the equations and investigate the effect of surface roughness on the physical mechanisms of transition. All roughness types lead to a stabilization of the Type I (cross-flow) instability mode for both flows, with the exception of azimuthally-anisotropic roughness (radial grooves) within the Bödewadt layer which is destabilizing. In the case of the viscous Type II instability mode, the results predict a destabilization effect of radially-anisotropic roughness (concentric grooves) on both flows, whereas both azimuthally-anisotropic roughness and isotropic roughness have a stabilization effect. The results presented here confirm the results of our prior linear stability analyses.

  • 29.
    Alveroglu, B.
    et al.
    Department of Mathematics, University of Leicester, Leicester, LE1 7RH, United Kingdom.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Garrett, S. J.
    Department of Engineering, University of Leicester, Leicester, LE1 7RH, United Kingdom.
    An energy analysis of convective instabilities of the Bödewadt and Ekman boundary layers over rough surfaces2019Ingår i: Open Archives of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2016, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2016 , 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    An energy balance equation for the three-dimensional Bödewadt and Ekman layers of the so called “BEK family" of rotating boundary-layer flows is derived. A Chebyshev discretisation method is used to solve the equations and investigate the effect of surface roughness on the physical mechanisms of transition. All roughness types lead to a stabilization of the Type I (cross-flow) instability mode for both flows, with the exception of azimuthally-anisotropic roughness (radial grooves) within the Bödewadt layer which is destabilising. In the case of the viscous Type II instability mode, the results predict a destabilisation effect of radially-anisotropic roughness (concentric grooves) on both flows, whereas both azimuthally-anisotropic roughness and isotropic roughness have a stabilisation effect. The results presented here confirm the results of our prior linear stability analyses.

  • 30. Alveroglu, B.
    et al.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Garrett, S. J.
    The effect of surface roughness on the convective instability of the BEK family of boundary-layer flows2016Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 56, s. 178-187Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A Chebyshev polynomial discretisation method is used to investigate the effect of both anisotropic (radially and azimuthally) and isotropic surface roughnesses on the convective instability of the BEK family of rotating boundary-layer flows. The mean-flow profiles for the velocity components are obtained by modelling surface roughness with a partial-slip approach. A linear stability analysis is then performed to investigate the effect of roughness on the convective instability characteristics of the inviscid Type I (cross-flow) instability and the viscous Type II instability. It is revealed that all roughness types lead to a stabilisation of the Type I mode in all flows within the BEK family, with the exception of azimuthally-anisotropic roughness (radial grooves) within the Bödewadt layer which causes a mildly destabilising effect. In the case of the Type II mode, the results reveal the destabilising effect of radially-anisotropic roughness (concentric grooves) on all the boundary layers, whereas both azimuthally-anisotropic and isotropic roughnesses have a stabilising effect on the mode for Ekman and von Kármán layers. Complementary results are also presented by considering the effects of roughness on the growth rates of each instability mode within the Ekman layer.

  • 31.
    Amor, Christian
    et al.
    Univ Politecn Madrid, Sch Aerosp Engn, E-28040 Madrid, Spain..
    Perez, Jose M.
    Univ Politecn Madrid, Sch Aerosp Engn, E-28040 Madrid, Spain..
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Vinuesa, Ricardo
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Le Clainche, Soledad
    Univ Politecn Madrid, Sch Aerosp Engn, E-28040 Madrid, Spain..
    Soft Computing Techniques to Analyze the Turbulent Wake of a Wall-Mounted Square Cylinder2020Ingår i: 14th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2019 / [ed] Alvarez, FM Lora, AT Munoz, JAS Quintian, H Corchado, E, Springer, 2020, Vol. 950, s. 577-586Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper introduces several methods, generally used in fluid dynamics, to provide low-rank approximations. The algorithm describing these methods are mainly based on singular value decomposition (SVD) and dynamic mode decomposition (DMD) techniques, and are suitable to analyze turbulent flows. The application of these methods will be illustrated in the analysis of the turbulent wake of a wall-mounted cylinder, a geometry modeling a skyscraper. A brief discussion about the large and small size structures of the flow will provide the key ideas to represent the general dynamics of the flow using low-rank approximations. If the flow physics is understood, then it is possible to adapt these techniques, or some other strategies, to solve general complex problems with reduced computational cost. The main goal is to introduce these methods as machine learning strategies that could be potentially used in the field of fluid dynamics, and that can be extended to any other research field.

  • 32.
    Appelquist, Elinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik. Swedish e-Science Research Centre (SeRC).
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik. Swedish e-Science Research Centre (SeRC).
    Alfredsson, P. Henrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Lingwood, Rebecca J.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik. University of Cambridge, Cambridge .
    Investigation of the Global Instability of the Rotating-disk Boundary Layer2015Ingår i: Procedia IUTAM, Elsevier, 2015, s. 321-328Konferensbidrag (Refereegranskat)
    Abstract [en]

    The development of the flow over a rotating disk is investigated by direct numerical simulations using both the linearized and fully nonlinear incompressible Navier-Stokes equations. These simulations allow investigation of the transition to turbulence of the realistic spatially-developing boundary layer. The current research aims to elucidate further the global linear stability properties of the flow, and relate these to local analysis and discussions in literature. An investigation of the nonlinear upstream (inward) influence is conducted by simulating a small azimuthal section of the disk (1/68). The simulations are initially perturbed by an impulse disturbance where, after the initial transient behaviour, both the linear and nonlinear simulations show a temporally growing upstream mode. This upstream global mode originates in the linear case close to the end of the domain, excited by an absolute instability at this downstream position. In the nonlinear case, it instead originates where the linear region ends and nonlinear harmonics enter the flow field, also where an absolute instability can be found. This upstream global mode can be shown to match a theoretical mode from local linear theory involved in the absolute instability at either the end of the domain (linear case) or where nonlinear harmonics enter the field (nonlinear case). The linear simulation grows continuously in time whereas the nonlinear simulation saturates and the transition to turbulence moves slowly upstream towards smaller radial positions asymptotically approaching a global upstream mode with zero temporal growth rate, which is estimated at a nondimensional radius of 582.

  • 33.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Imayama, Shintaro
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Revisiting the stability analysis of the flow over a rotating diskManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Local linear stability analysis applied to the rotating-disk flow is discussed.This flow case is an exact similarity solution to the cylindrical incompressible Navier–Stokes equations also called the von K ́arm ́an flow. The laminar mean velocity profiles are obtained by solving the resulting ordinary differential equations assuming the flow is axisymmetric and time independent. Two stability-analyses methods are used to investigate the local linear stability of this flow: i)the ‘shooting method’; and ii) the ‘Chebyshev polynomial method’. This theoretical investigation focuses on convectively unstable disturbances. Results obtained from the two methods are compared and the methods are shown togive similar results. These theoretical results are also compared with direct numerical simulations and experimental results showing good agreement.

  • 34.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Imayama, Shintaro
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Revisiting the stability analysis of the flow over a rotating disk2014Rapport (Övrigt vetenskapligt)
    Abstract [en]

    Local linear stability analysis applied to the rotating-disk flow is discussed.This flow case is an exact similarity solution to the cylindrical incompressibleNavier–Stokes equations also called the von Karman flow. The laminar mean velocity profiles are obtained by solving the resulting ordinary differential equa-tions assuming the flow is axisymmetric and time independent. Two stability-analyses methods are used to investigate the local linear stability of this flow: i)the ‘shooting method’; and ii) the ‘Chebyshev polynomial method’. This the-oretical investigation focuses on convectively unstable disturbances. Resultsobtained from the two methods are compared and the methods are shown togive similar results. These theoretical results are also compared with directnumerical simulations and experimental results showing good agreement.

  • 35.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Imayama, Shintaro
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Alfredsson, Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Simulating the linear behaviour of the flow over a rotating disk due to roughness elements2014Rapport (Övrigt vetenskapligt)
  • 36.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philip
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Alfredsson, P. Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca J.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. University of London, United Kingdom.
    On the global nonlinear instability of the rotating-disk flow over a finite domain2016Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 803, s. 332-355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct numerical simulations based on the incompressible nonlinear Navier-Stokes equations of the flow over the surface of a rotating disk have been conducted. An impulsive disturbance was introduced and its development as it travelled radially outwards and ultimately transitioned to turbulence has been analysed. Of particular interest was whether the nonlinear stability is related to the linear stability properties. Specifically three disk-edge conditions were considered; (i) a sponge region forcing the flow back to laminar flow, (ii) a disk edge, where the disk was assumed to be infinitely thin and (iii) a physically realistic disk edge of finite thickness. This work expands on the linear simulations presented by Appelquist el al. (J. Fluid. Mech., vol. 765, 2015, pp. 612-631), where, for case (i), this configuration was shown to be globally linearly unstable when the sponge region effectively models the influence of the turbulence on the flow field. In contrast, case (ii) was mentioned there to he linearly globally stable, and here, where nonlinearity is included, it is shown that both cases (ii) and (iii) are nonlinearly globally unstable. The simulations show that the flow can he globally linearly stable if the linear wavepacket has a positive front velocity. However, in the same flow field, a nonlinear global instability can emerge, which is shown to depend on the outer turbulent region generating a linear inward-travelling mode that sustains a transition front within the domain. The results show that the front position does not approach the critical Reynolds number for the local absolute instability, R = 507. Instead, the front approaches R = 583 and both the temporal frequency and spatial growth rate correspond to a global mode originating at this position.

  • 37.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Simulating the laminar von Karman flow in Nek50002014Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The laminar incompressible boundary layer over a rotating disk, also called the von Karman flow, is investigated. The goal is to set up a direct numericalsimulation (DNS) environment for further use to investigate the transition from laminar to turbulent flow for this boundary layer. For this the spectral-element code Nek5000 is used. A set of ODE-equations are first derived from the incompressible cylindrical Navier–Stokes equations, which are solved for the exact von Karman solution. Further, Nek5000 is prepared to solve for the same laminar solution. Comparing the two solutions give a quantification of the accuracy of the DNS solver Nek5000. Different scalings of the equations are investigated, together with quantifications of how good the different available boundary conditions are, also investigating different reference frames and grid dependency of the solution. The general conclusion is that the von K ́rm ́na aflow is possible to simulate in Nek5000. The method was robust when it cameto using different scalings, reference frames and resolutions.

  • 38.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Alfredsson, Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Global linear instability and the radial boundary of the rotating-disk flowManuskript (preprint) (Övrigt vetenskapligt)
  • 39.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Alfredsson, Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Lingwood, Rebecca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. nstitute of Continuing Education, University of Cambridge, Madingley Hall, Madingley Cambridge, United Kingdom .
    Global linear instability of the rotating-disk flow investigated through simulations2015Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 765, s. 612-631Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Numerical simulations of the flow developing on the surface of a rotating disk are presented based on the linearized incompressible Navier-Stokes equations. The boundary-layer flow is perturbed by an impulsive disturbance within a linear global framework, and the effect of downstream turbulence is modelled by a damping region further downstream. In addition to the outward-travelling modes, inward-travelling disturbances excited at the radial end of the simulated linear region, r(end), by the modelled turbulence are included within the simulations, potentially allowing absolute instability to develop. During early times the flow shows traditional convective behaviour, with the total energy slowly decaying in time. However, after the disturbances have reached r(end), the energy evolution reaches a turning point and, if the location of r(end) is at a Reynolds number larger than approximately R = 594 (radius non-dimensionalized by root v/Omega*, where v is the kinematic viscosity and Omega* is the rotation rate of the disk), there will be global temporal growth. The global frequency and mode shape are clearly imposed by the conditions at r(end). Our results suggest that the linearized Ginzburg-Landau model by Healey (J. Fluid Mech., vol. 663, 2010, pp. 148-159) captures the (linear) physics of the developing rotating-disk flow, showing that there is linear global instability provided the Reynolds number of r(end) is sufficiently larger than the critical Reynolds number for the onset of absolute instability.

  • 40.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Alfredsson, P. Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Lingwood, R. J.
    Transition to turbulence in the rotating-disk boundary-layer flow with stationary vortices2017Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 836, s. 43-71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper proposes a resolution to the conundrum of the roles of convective and absolute instability in transition of the rotating-disk boundary layer. It also draws some comparison with swept-wing flows. Direct numerical simulations based on the incompressible Navier-Stokes equations of the flow over the surface of a rotating disk with modelled roughness elements are presented. The rotating-disk flow has been of particular interest for stability and transition research since the work by Lingwood (J.FluidMech., vol.299, 1995, pp.17-33) where an absolute instability was found. Here stationary disturbances develop from roughness elements on the disk and are followed from the linear stage, growing to saturation and finally transitioning to turbulence. Several simulations are presented with varying disturbance amplitudes. The lowest amplitude corresponds approximately to the experiment by Imayama etal. (J.FluidMech., vol.745, 2014a, pp.132-163). For all cases, the primary instability was found to be convectively unstable, and secondary modes were found to be triggered spontaneously while the flow was developing. The secondary modes further stayed within the domain, and an explanation for this is a proposed globally unstable secondary instability. For the low-amplitude roughness cases, the disturbances propagate beyond the threshold for secondary global instability before becoming turbulent, and for the high-amplitude roughness cases the transition scenario gives a turbulent flow directly at the critical Reynolds number for the secondary global instability. These results correspond to the theory of Pier (J.EngngMaths, vol.57, 2007, pp.237-251) predicting a secondary absolute instability. In our simulations, high temporal frequencies were found to grow with a large amplification rate where the secondary global instability occurred. For smaller radial positions, low-frequency secondary instabilities were observed, tripped by the global instability.

  • 41.
    Appelquist, Ellinor
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Alfredsson, P. Henrik
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lingwood, Rebecca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. Queen Mary University of London, Mile End Road, London, United Kingdom.
    Turbulence in the rotating-disk boundary layer investigated through direct numerical simulations2018Ingår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 70, s. 6-18Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct numerical simulations (DNS) are reported for the turbulent rotating-disk boundary layer for the first time. Two turbulent simulations are presented with overlapping small and large Reynolds numbers, where the largest corresponds to a momentum-loss Reynolds number of almost 2000. Simulation data are compared with experimental data from the same flow case reported by Imayama et al. (2014), and also a comparison is made with a numerical simulation of a two-dimensional turbulent boundary layer (2DTBL) over a flat plate reported by Schlatter and Örlü (2010). The agreement of the turbulent statistics between experiments and simulations is in general very good, as well as the findings of a missing wake region and a lower shape factor compared to the 2DTBL. The simulations also show rms-levels in the inner region similar to the 2DTBL. The simulations validate Imayama et al.’s results showing that the rotating-disk turbulent boundary layer in the near-wall region contains shorter streamwise (azimuthal) wavelengths than the 2DTBL, probably due to the outward inclination of the low-speed streaks. Moreover, all velocity components are available from the simulations, and hence the local flow angle, Reynolds stresses and all terms in the turbulent kinetic energy equation are also discussed. However there are in general no large differences compared to the 2DTBL, hence the three-dimensional effects seem to have only a small influence on the turbulence.

  • 42.
    Ardekani, Mehdi Niazi
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Costa, Pedro
    Breugem, Wim Paul
    Brandt, Luca
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Numerical study of the sedimentation of spheroidal particles2016Ingår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 87, s. 16-34Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gravity-driven motion of-rigid particles in a viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated for spherical particles. We therefore consider the sedimentation of non-spherical (spheroidal) isolated and particle pairs in a viscous fluid via numerical simulations using the Immersed Boundary Method. The simulations performed here show that the critical Galileo number for the onset of secondary motions decreases as the spheroid aspect ratio departs from 1. Above this critical threshold, oblate particles perform a zigzagging motion whereas prolate particles rotate around, the vertical axis while having their broad side facing the falling direction. Instabilities of the vortices in the wake follow when farther increasing the Galileo number. We also study the drafting kissing-tumbling associated with the settling of particle pairs. We find that the interaction time increases significantly for non-spherical particles and, more interestingly, spheroidal particles are attracted from larger lateral displacements. This has important implications for the estimation of collision kernels and can result its increasing clustering in suspensions of sedimenting spheroids.

  • 43.
    Arnal, Daniel
    et al.
    ONERA.
    Tran, Dac
    Dassault Aviation.
    Hein, Stefan
    DLR.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Engelbrecht, T.
    SUPERsonic TRAnsition Control Contract N° AST4-CT-2005-516100: Final Technical Report2008Rapport (Övrigt vetenskapligt)
  • 44. Arnqvist, J.
    et al.
    Segalini, Antonio
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Dellwik, E.
    Bergström, H.
    Wind Statistics from a Forested Landscape2015Ingår i: Boundary-layer Meteorology, ISSN 0006-8314, E-ISSN 1573-1472, Vol. 156, nr 1, s. 53-71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An analysis and interpretation of measurements from a 138-m tall tower located in a forested landscape is presented. Measurement errors and statistical uncertainties are carefully evaluated to ensure high data quality. A 40 wide wind-direction sector is selected as the most representative for large-scale forest conditions, and from that sector first-, second- and third-order statistics, as well as analyses regarding the characteristic length scale, the flux-profile relationship and surface roughness are presented for a wide range of stability conditions. The results are discussed with focus on the validity of different scaling regimes. Significant wind veer, decay of momentum fluxes and reduction in shear length scales with height are observed for all stability classes, indicating the influence of the limited depth of the boundary layer on the measured profiles. Roughness sublayer characteristics are however not detected in the presented analysis. Dimensionless gradients are shown to follow theoretical curves up to 100 m in stable conditions despite surface-layer approximations being invalid. This is attributed to a balance of momentum decay and reduced shear length scale growth with height. The wind profile shows a strong stability dependence of the aerodynamic roughness length, with a 50 % decrease from neutral to stable conditions.

  • 45.
    Atzori, Marco
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Vinuesa, Ricardo
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Lozano-Durán, A.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Characterization of turbulent coherent structures in square duct flow2018Ingår i: Journal of Physics: Conference Series, Institute of Physics Publishing (IOPP), 2018, Vol. 1001, nr 1Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl's second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.

  • 46.
    Augier, Pierre
    et al.
    LEGI, Université Grenoble Alpes.
    Bonamy, Cyrille
    LEGI, Université Grenoble Alpes.
    Campagne, Antoine
    LEGI, Université Grenoble Alpes.
    Mohanan, Ashwin Vishnu
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    FluidImage, a libre framework for scientific treatments of large sets of images: A software for the fluid dynamic community, by the fluid dynamic community2016Konferensbidrag (Övrigt vetenskapligt)
  • 47.
    Augier, Pierre
    et al.
    LEGI, Université Grenoble Alpes.
    Mohanan, Ashwin Vishnu
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Bonamy, Cyrille
    LEGI, Université Grenoble Alpes.
    FluidDyn: A Python Open-Source Framework for Research and Teaching in Fluid Dynamics by Simulations, Experiments and Data Processing2019Ingår i: Journal of Open Research Software, E-ISSN ‎2049-9647, Vol. 7, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    FluidDyn is a project to foster open-science and open-source in the fluid dynamics community. It is thought of as a research project to channel open-source dynamics, methods and tools to do science. We propose a set of Python packages forming a framework to study fluid dynamics with different methods, in particular laboratory experiments (package fluidlab), simulations (packages fluidfft, fluidsim and fluidfoam) and data processing (package fluidimage). In the present article, we give an overview of the specialized packages of the project and then focus on the base package called fluiddyn, which contains common code used in the specialized packages. Packages fluidfft and fluidsim are described with greater detail in two companion papers [4, 5]. With the project FluidDyn, we demonstrate that specialized scientific code can be written with methods and good practices of the open-source community. The Mercurial repositories are available in Bitbucket (https://bitbucket.org/fluiddyn/). All codes are documented using Sphinx and Read the Docs, and tested with continuous integration run on Bitbucket Pipelines and Travis. To improve the reuse potential, the codes are as modular as possible, leveraging the simple object-oriented programming model of Python. All codes are also written to be highly efficient, using C++, Cython and Pythran to speedup the performance of critical functions.

  • 48.
    Augier, Pierre
    et al.
    LEGI, Université Grenoble Alpes.
    Mohanan, Ashwin Vishnu
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Lindborg, Erik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Shallow water wave turbulence2019Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 874, s. 1169-1196Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dynamics of irrotational shallow water wave turbulence forced in large scales and dissipated at small scales is investigated. First, we derive the shallow water analogue of the `four-fifths law' of Kolmogorov turbulence for a third order structure function involving velocity and displacement increments. Using this relation and assuming that the flow is dominated by shocks we develop a simple model predicting that the shock amplitude scales as (ϵd)1/3, where ϵ is the mean dissipation rate and d the mean distance between the shocks, and that the pth order displacement and velocity structure functions scale as (ϵd)p/3r/d, where r is the separation. Then we carry out a series of forced simulations with resolutions up to 76802, varying the Froude number, Ff=ϵ1/3/ckf1/3, where kf is the forcing wave number and c is the wave speed. In all simulations a stationary state is reached in which there is a constant spectral energy flux and equipartition between kinetic and potential energy in the constant flux range. The third order structure function relation is satisfied with a high degree of accuracy. Mean energy is found to scale as E∼√(ϵc/kf), and is also dependent on resolution, indicating that shallow water wave turbulence does not fit into the paradigm of a Richardson-Kolmogorov cascade. In all simulations shocks develop, displayed as long thin bands of negative divergence in flow visualisations. The mean distance between the shocks is found to scale as dFf1/2/kf. Structure functions of second and higher order are found to scale in good agreement with the model. We conclude that in the weak limit, Ff→0, shocks will become denser and weaker and finally disappear for a finite Reynolds number. On the other hand, for a given Ff, no matter how small, shocks will prevail if the Reynolds number is sufficiently large.

  • 49.
    Bagheri, Faranggis
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Mitra, Dhrubaditya
    NORDITA.
    Perlekar, Prasad
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Statistics of polymer extensions in turbulent channel flow2012Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 86, nr 5, s. 056314-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF) of finite-time Lyapunov exponents and from them the corresponding Cramer's function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number Wi<1) and the FENE model. We use the location of the minima of the Cramer's function to define the Weissenberg number precisely such that we observe coil-stretch transition at Wi1. We find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon, and Lebedev for linear polymers (Oldroyd-B model) with Wi <1 and by Chertkov for nonlinear FENE-P model of polymers. For Wi >1 (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the streamwise direction of the flow, but near the center line the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.

  • 50.
    Bagheri, Shervin
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators2012Ingår i: Archives of Computational Methods in Engineering, ISSN 1134-3060, E-ISSN 1886-1784, Vol. 19, nr 3, s. 341-379Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    This paper considers the analysis and control of fluid flows using tools from dynamical systems and control theory. The employed tools are derived from the spectral analysis of various linear operators associated with the Navier-Stokes equations. Spectral decomposition of the linearized Navier-Stokes operator, the Koopman operator, the spatial correlation operator and the Hankel operator provide a means to gain physical insight into the dynamics of complex flows and enables the construction of low-dimensional models suitable for control design. Since the discretization of the Navier-Stokes equations often leads to very large-scale dynamical systems, matrix-free and in some cases iterative techniques have to be employed to solve the eigenvalue problem. The common theme of the numerical algorithms is the use of direct numerical simulations. The theory and the algorithms are exemplified on flow over a flat plate and a jet in crossflow, as prototypes for the laminar-turbulent transition and three-dimensional vortex shedding.

1234567 1 - 50 av 1194
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf