Ändra sökning
Avgränsa sökresultatet
1 - 22 av 22
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Banerjee, Indradumna
    et al.
    KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi.
    Salih, Tagrid
    KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi.
    Ramachandraiah, Harisha
    KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Tidigare Institutioner (före 2005), Kemi.
    Araújo, A. C.
    Karlsson, M.
    Russom, Aman
    KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Slipdisc: A versatile sample preparation platform for point of care diagnostics2017Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 56, s. 35048-35054Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a microfluidic sample preparation platform called "Slipdisc" based on slipchip technology. Slipdisc is a rotational slipchip that uses a unique hand-wound clockwork mechanism for precise movement of specially fabricated polycarbonate discs. In operation, the microchannels and microchambers carved on the closely aligned microfluidic discs convert from continuous filled paths to defined compartments using the slip movement. The clockwork mechanism introduced here is characterised by a food dye experiment and a conventional HRP TMB reaction before measuring lactate dehydrogenase (LDH) enzyme levels, which is a crucial biomarker for neonatal diagnostics. The colorimetry based detection of LDH was performed with an unmodified camera and an image analysis procedure based on normalising images and observing changes in red channel intensity. The analysis showed a close to unity coefficient of determination (R2 = 0.96) in detecting the LDH concentration when compared with a standard Chemical Analyser, demonstrating the excellent performance of the slipdisc platform with colorimetric detection. The versatile point of care sample preparation platform should ideally be suited for a multitude of applications at resource-limited settings.

  • 2.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Duran, Veronica Lopez
    Granberg, Hjalmar
    Innventia AB.
    Sandberg, Mats
    Acreo Swedish ICT AB.
    Larsson, Per A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Macro- and mesoporous nanocellulose beads for use in energy storage devices2016Ingår i: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 5, s. 246-254Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemically cross-linked, wet-stable cellulose nanofibril (CNF) aerogel beads were fabricated using a novel procedure. The procedure facilitated controlled production of millimetre-sized CNF aerogel beads without freeze-drying or critical point drying, while still retaining a highly porous structure with low density. The aerogel beads were mechanically robust in the dry state, supporting loads of 1.3 N at 70% compression, even after being soaked in water and re-dried. Furthermore, they displayed both a good stability in water and a remarkably good shape recovery after wet compression. Owing to the stability in water, the entire surface of the highly porous aerogel beads could be successfully functionalized with polyelectrolytes and carboxyl-functionalized single-wall carbon nanotubes (CF-SWCNTs) using the Layer-by-Layer technique, introducing a significant electrical conductivity (1.6 mS/cm) to the aerogel beads. The functionalized, electrically conducting aerogel beads could carry as much as 2 kA/cm(2) and act as electrodes in a supercapacitor displaying a stabilized charge storage capacity of 9.8 F/g after 50 charging-discharging cycles.

  • 3.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Marais, Andrew
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Granberg, Hjalmar
    RISE Bioecon, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils2019Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 2, s. 728-737Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 4.
    Erlandsson, Johan
    et al.
    KTH.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden..
    Sandberg, Mats
    Acreo Swedish ICT AB, Norrkoping, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nanocellulose aerogel beads: Structurable and printable energy storage2017Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikel i tidskrift (Övrigt vetenskapligt)
  • 5.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Macro- and mesoporous spherical nanocellulose beads for use in energy storage devices2016Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Granberg, H.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malkoch, Michael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 40, s. 19371-19380Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 7.
    Ingverud, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Malkoch, Michael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional materialManuskript (preprint) (Övrigt vetenskapligt)
  • 8.
    Kaldéus, Tahani
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical propertiesManuskript (preprint) (Övrigt vetenskapligt)
  • 9.
    Kaldéus, Tahani
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical properties2019Ingår i: Artikel i tidskrift (Övrigt vetenskapligt)
  • 10.
    Larsson, Per
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Lopez Duran, Veronica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Henschen, Jonatan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Tchang Cervin, Nicholas
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Innventia AB, Stockholm, Sweden.
    Al-Ansari, Zeinab
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark..
    Svagan, Anna Justina
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Crosslinking as a facilitator for novel (nano)cellulose-based applications2017Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikel i tidskrift (Övrigt vetenskapligt)
  • 11.
    López Durán, Veronica
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH Royal Inst Technol, Fibre & Polymer Technol, Teknikringen 56-58, SE-10044 Stockholm, Sweden.;KTH Royal Inst Technol, BiMaC Innovat, Teknikringen 56-58, SE-10044 Stockholm, Sweden..
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength2018Ingår i: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, nr 8, s. 9951-9957Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Highly porous materials with low density were developed from chemically modified cellulose fibers using solvent-exchange and air drying. Periodate oxidation was initially performed to introduce aldehydes into the cellulose chain, which were then further oxidized to carboxyl groups by chlorite oxidation. Low-density materials were finally achieved by a second periodate oxidation under which the fibers self-assembled into porous fibrous networks. Following a solvent exchange to acetone, these networks could be air-dried without shrinkage. The properties of the materials were tuned by mechanical mixing with a high intensity mixer for different times prior to the second periodate oxidation, which resulted in porosities between 94.4% and 96.3% (i.e., densities between 54 and 82 kg/m(3)). The compressive strength of the materials was between 400 and 1600 kPa in the dry state and between 20 and 50 kPa in the wet state. It was also observed that in the wet state the fiber networks could be compressed up to 80% while still being able to recover their shape. These networks are highly interesting for use in different types of absorption products, and since they also have a high wet integrity, they can be modified with physical methods for different high-value-added end-use applications.

  • 12. López Durán, Verónica
    et al.
    Erlandsson, Johan
    Wågberg, Lars
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Novel cellulose-based light weight, wet resilient materials with tunable porosity, density and strengthManuskript (preprint) (Övrigt vetenskapligt)
  • 13. Naderi, A.
    et al.
    Koschella, A.
    Heinze, T.
    Shih, K. C.
    Nieh, M. P.
    Pfeifer, A.
    Chang, C. C.
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Corrigendum to “Sulfoethylated nanofibrillated cellulose: Production and properties” [Carbohydr. Polym. 169 (2017) 515–523] (S0144861717304101) (10.1016/j.carbpol.2017.04.026))2018Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 179Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The author Ali Naderi regrets the wrong information given with regard to his affiliation. The author would like to apologise for any inconvenience caused.

  • 14. Naderi, Ali
    et al.
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Sundstrom, Jonas
    Lindstrom, Tom
    Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pre-treatment process2016Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, nr 3, s. 372-378Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Well-delaminated carboxymethylated nanofibrillated cellulose (NFCCarb) systems are prerequisites for many industrial applications. In this study it was shown that addition of water, in a narrow range, not only improves the efficiency of the carboxymethylation process, but also enhances the degree of delamination of NFCCarb, which leads to improved properties. The observations were proposed to be due to a more homogeneous distribution of the charged groups, brought about by the higher swelling of fibers with inclusion of water.

  • 15.
    Naderi, Ali
    et al.
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Larsson, Per Tomas
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Stevanic, Jasna S.
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Lindström, Tom
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Effect of the size of the charged group on the properties of alkoxylated NFCs2017Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, nr 3, s. 1307-1317Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The impact of the size of the charged group on the properties of alkoxylated NFC was studied by two chloroalkyl acid reagents. It was found that the employment of the larger 2-chloropropionic acid reagent leads to improved properties, e.g. higher fraction of nano-sized materials, and significantly better redispersion as compared to when the smaller monochloroacetic acid was employed. The differences in the impacts of the different reagents were hypothesized to be due to a more efficient disruption of the cohesion between the nanofibrils when a larger charged group was employed.

  • 16.
    Naderi, Ali
    et al.
    Innventia AB, Stockholm, Sweden..
    Larsson, Tomas
    Innventia AB, Stockholm, Sweden..
    Srndovi, Jasna Stevanic
    Innventia AB, Stockholm, Sweden..
    Lindström, Tom
    Innventia AB, Stockholm, Sweden..
    Erlandsson, Johan
    KTH. Royal Inst Technol, Stockholm, Sweden..
    Effect of the size of the charged group on the properties of alkoxylated NFCs2017Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikel i tidskrift (Övrigt vetenskapligt)
  • 17. Naderi, Ali
    et al.
    Lindstrom, Tom
    Erlandsson, Johan
    Sundstrom, Jonas
    Flodberg, Goran
    A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step2016Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, nr 3, s. 364-371Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The viscosity, tensile strength-and barrier properties of enzymatically pre-treated-(NFCEnz), carboxymethylated-(NFCCarb) and carboxymethyl cellulose (CMC) modified (NFCCMC) nanofibrillated cellulose systems (NFC) that have been produced at about the same energy consumption levels in the mechanical delamination step in the manufacturing of the different NFCs are reported. It was found that NFCEnz and NFCCMC are characterized by low degrees of fibrillation. Carboxymethylated NFC displayed superior tensile strength properties, lower fiber fragment content and a higher viscosity when compared to NFCEnz and NFCCMC. Interestingly, NFCEnz displayed equal or better barrier properties compared to the highly fibrillated NFCCarb.

  • 18. Naderi, Ali
    et al.
    Lindstrom, Tom
    Weise, Christoph F.
    Flodberg, Goren
    Sundstrom, Jonas
    Junel, Kristina
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Runebjork, AnneMarie
    Phosphorylated nanofibrillated cellulose: production and properties2016Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, nr 1, s. 20-29Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Phosphate functionalized nanofibrillated cellulose (NFC) was produced through an industrially attractive process, by reacting wood pulp with a phosphate containing salt, followed by mechanical delamination through microfluidization. The degrees of delamination of the phosphorylated NFCs (judged by among others AFM-imaging, rheological studies and tensile strength measurements on NFC films) were found to improve with increasing functionalization of the pulp and number of microfluidization-passes. The NFC systems were found to display similar characteristics as other well-known NFC systems. Interestingly, however, the sufficiently delaminated phosphorylated NFCs exhibited significantly lower oxygen permeability values (at RH 50%) than the published values of several well-known highly delaminated NFC systems. The potential application of the phosphorylated NFC in packaging applications can hence be envisaged.

  • 19. Naderi, Ali
    et al.
    Lindström, Tom
    Sundström, Jonas
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Flodberg, Göran
    Erlandsson, Johan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties2015Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 22, nr 2, s. 1159-1173Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method (Ankerfors and Lindstrom in Method for providing nanocellulose comprising modified cellulose fibers, 2009) was employed to physically attach anionic carboxymethyl cellulose (CMC) chains onto wood pulp, upon which it was fibrillated by a microfluidizer-type homogenizer at high applied pressures and at dilute conditions [< 3 % (w/w)]. It was found that the CMC-modified pulp can be fibrillated at the same consistencies as many of the commercially available NFC products. The NFC manufacturing process was also deemed to be energy efficient, as it lacked the need for mechanical pre-treatment, which is often a prerequisite for the production of many existing NFC systems. The CMC-based NFC was studied with respect to the rheological characteristics, and was also characterized using AFM-imaging. Further, The NFC was made into films, and its tensile strength was determined together with its barrier properties. In general, the rheological characteristics (viscosity and storage modulus) together with the tensile strength and oxygen barrier properties of the films were improved with increasing the number of passes through the microfluidizer. The fibrillated CMC-modified pulp was found to be as efficient as other NFC systems when employed as dry strength additive. The employment of the investigated material, which can be produced at acceptable costs and through environmentally benign and industrially relevant processes can, hence, potentially lead to significant future savings in the energy consumption levels in the paper and cardboard manufacturing processes, which have been recognized as major application areas of NFC products.

  • 20.
    Petrou, Georgia
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Jansson, Ronnie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Hogqvist, Mark
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Hedhammar, My
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Crouzier, Thomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Genetically Engineered Mucoadhesive Spider Silk2018Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 8, s. 3268-3279Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mucoadhesion is defined as the adhesion of a material to the mucus gel covering the mucous membranes. The mechanisms controlling mucoadhesion include nonspecific electrostatic interactions and specific interactions between the materials and the mucins, the heavily glycosylated proteins that form the mucus gel. Mucoadhesive materials can be used to develop mucosal wound dressings and noninvasive transmucosal drug delivery systems. Spider silk, which is strong, biocompatible, biodegradable, nontoxic, and lightweight would serve as an excellent base for the development of such materials. Here, we investigated two variants of the partial spider silk protein 4RepCT genetically engineered in order to functionalize them with mucoadhesive properties. The pLys-4RepCT variant was functionalized with six cationically charged lysines, aiming to provide nonspecific adhesion from electrostatic interactions with the anionically charged mucins, while the hGal3-4RepCT variant was genetically fused with the Human Galectin-3 Carbohydrate Recognition Domain which specifically binds the mucin glycans Gal beta 1-3GlcNAc and Gal beta 1-4GlcNAc. First, we demonstrated that coatings, fibers, meshes, and foams can be readily made from both silk variants. Measured by the adsorption of both bovine submaxillary mucin and pig gastric mucin, the newly produced silk materials showed enhanced mucin binding properties compared with materials of wild-type (4RepCT) silk. Moreover, we showed that pLys-4RepCT silk coatings bind mucins through electrostatic interactions, while hGal3-4RepCT silk coatings bind mucins through specific glycan-protein interactions. We envision that the two new mucoadhesive silk variants pLys-4RepCT and hGal3-4RepCT, alone or combined with other biofunctional silk proteins, constitute useful new building blocks for a range of silk protein-based materials for mucosal treatments.

  • 21.
    Pettersson, Torbjörn
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    On the mechanism of freeze-induced crosslinking of aerogels made from periodate-oxidised cellulose nanofibrils2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 22.
    Wågberg, Lars
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Hamedi, Max
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Marais, Andrew
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Stanford Univ, Stanford, CA 94305 USA..
    Nyström, Gustav
    Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland..
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    The use of the layer-by-layer technology and low density networks of cellulose nanofibrils for preparing new materials for energy storage2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
1 - 22 av 22
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf