Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bruell, Gabriele
    et al.
    Ehrnstrom, Mats
    Geyer, Anna
    Pei, Long
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
    Symmetric solutions of evolutionary partial differential equations2017Ingår i: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 30, nr 10, s. 3932-3950Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We show that for a large class of evolutionary nonlinear and nonlocal partial differential equations, symmetry of solutions implies very restrictive properties of the solutions and symmetry axes. These restrictions are formulated in terms of three principles, based on the structure of the equations. The first principle covers equations that allow for steady solutions and shows that any spatially symmetric solution is in fact steady with a speed determined by the motion of the axis of symmetry at the initial time. The second principle includes equations that admit breathers and steady waves, and therefore is less strong: it holds that the axes of symmetry are constant in time. The last principle is a mixed case, when the equation contains terms of the kind from both earlier principles, and there may be different outcomes; for a class of such equations one obtains that a spatially symmetric solution must be constant in both time and space. We list and give examples of more than 30 well-known equations and systems in one and several dimensions satisfying these principles; corresponding results for weak formulations of these equations may be attained using the same techniques. Our investigation is a generalisation of a local and one-dimensional version of the first principle from EhrnstrOm et al (2009 Int. Math. Res. Not. 2009 4578-96) to nonlocal equations, systems and higher dimensions, as well as a study of the standing and mixed cases.

  • 2.
    Lenells, Jonatan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
    Pei, Long
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
    Exact Solution of a Neumann Boundary Value Problem for the Stationary Axisymmetric Einstein Equations2019Ingår i: Journal of nonlinear science, ISSN 0938-8974, E-ISSN 1432-1467, Vol. 29, nr 4, s. 1621-1657Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For a stationary and axisymmetric spacetime, the vacuum Einstein field equations reduce to a single nonlinear PDE in two dimensions called the Ernst equation. By solving this equation with a Dirichlet boundary condition imposed along the disk, Neugebauer and Meinel in the 1990s famously derived an explicit expression for the spacetime metric corresponding to the Bardeen-Wagoner uniformly rotating disk of dust. In this paper, we consider a similar boundary value problem for a rotating disk in which a Neumann boundary condition is imposed along the disk instead of a Dirichlet condition. Using the integrable structure of the Ernst equation, we are able to reduce the problem to a Riemann-Hilbert problem on a genus one Riemann surface. By solving this Riemann-Hilbert problem in terms of theta functions, we obtain an explicit expression for the Ernst potential. Finally, a Riemann surface degeneration argument leads to an expression for the associated spacetime metric.

  • 3.
    Pei, Long
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
    Wang, Yuexun
    Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway..
    A note on well-posedness of bidirectional Whitham equation2019Ingår i: Applied Mathematics Letters, ISSN 0893-9659, E-ISSN 1873-5452, Vol. 98, s. 215-223Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We consider the initial-value problem for the bidirectional Whitham equation, a system which combines the full two-way dispersion relation from the incompressible Euler equations with a canonical shallow-water nonlinearity. We prove local well-posedness in classical Sobolev spaces, using a square-root type transformation to symmetrise the system.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf