kth.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Barbosa, Fernando S.
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Tumova, Jana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Guiding Autonomous Exploration with Signal Temporal Logic2019Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 4, nr 4, s. 3332-3339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.

  • 2.
    Bonnevie, Rodrigue
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Long-Term Exploration in Unknown Dynamic Environments2021Ingår i: 2021 7Th International Conference On Automation, Robotics And Applications (Icara 2021), Institute of Electrical and Electronics Engineers (IEEE) , 2021, s. 32-37Konferensbidrag (Refereegranskat)
    Abstract [en]

    The task of exploration does not end when the robot has covered the entire environment. The world is dynamic and to model this property and to keep the map up to date the robot needs to re-explore. In this work, we present an approach to long-term exploration that builds on prior work on dynamic mapping, volumetric representations of space, and exploration planning. The main contribution of our work is a novel formulation of the information gain function that controls the exploration so that it trades off revisiting highly dynamic areas where changes are very likely with covering the rest of the environment to ensure both coverage and up-to-date estimates of the dynamics. We provide experimental validation of our approach in three different simulated environments.

  • 3.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping2022Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Autonoma mobila robotar har på senare år börjat komma in i hushållen i form av autonoma dammsugare och gräsklippare. Tillämpbarheten av mer avancerade och generella servicerobotar är nästan oändlig. Det vill säga robotar som kan utföra en mängd olika uppgifter, istället för att vara specialiserade för en enskild uppgift. För detta ändamål finns det några grundläggande utmaningar som måste lösas. En av nyckelfunktionerna hos en autonom mobil robot är navigering. För att uppnå verklig autonom navigering måste roboten kunna lokalisera sig själv, planera, utföra och uppdatera en plan som tar den till dess önskade plats, och generera en karta i farten över sin miljö om miljön är okänd, eller förändras. Denna avhandling fokuserar på de två senare av dessa utmaningar, planering och kartläggning. Närmare bestämt undersöker vi scenariot där roboten saknar förkunskaper om miljön, så kallad autonom utforskning.

    En av de viktigaste insikterna genom hela avhandlingen är att dessa utmaningar inte bör granskas isolerat. Eftersom dessa i allmänhet inte är huvuduppgifterna en verklig autonom mobil robot ska utföra; istället är de nödvändigheter för att utföra uppgifter på högre nivå. Därför bör aspekter som flexibilitet och skalbarhet ses som högre än att bara utföra uppgiften så effektivt eller snabbt som möjligt.

    En annan insikt, specifikt när det gäller kartläggning, kommer från kart-läggning av både konsumenter, de som använder kartorna, och producenter, de som skapar kartorna. Helst bör ett kartramverk optimeras för båda, eftersom det är meningslöst att skapa kartor som inte kan användas samt att anta att data kan extraheras från en karta på sätt som är omöjliga. I befintligt arbete är detta sällsynt.

    En tredje insikt, specifikt angående utforskning, kommer från att bryta ner typiska antaganden och förenklingar som generellt tillämpas för att göra problemet löst. Vi visar att problemet ofta formaliseras så att det leder till onödigt girigt beteende, där den förväntade informationsvinsten har för hög prioritet. Vi visar inte bara att vi med en mer generell formalisering kan nå bättre resultat utan också att informationsvinsten inte är viktig ur ett långsiktigt perspektiv.

    I denna avhandling presenterar vi ett kartläggningsramverk samt ett utforskningsramverk. Med dessa ramverk visar vi att flexibilitet och skalbarhet inte nödvändigtvis behöver ske på bekostnad av effektivitet. Vi bidrar med kartläggningsramverket, UFOMap, och utforkninsramverket, UFOExplorer, öppen källkod till samhället så att andra kan utveckla och bygga vidare på dem.

    Ladda ner fulltext (pdf)
    daniel_duberg_phd_thesis_kappa
  • 4.
    Duberg, Daniel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    The Obstacle-restriction Method for Tele-operation of Unmanned Aerial Vehicles with Restricted Motion2018Ingår i: 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), IEEE , 2018, s. 266-273Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents a collision avoidance method for tele-operated unmanned aerial vehicles (UAVs). The method is designed to assist the operator at all times, such that the operator can focus solely on the main objectives instead of avoiding obstacles. We restrict the altitude to be fixed in a three dimensional environment to simplify the control and operation of the UAV. The method contributes a number of desired properties not found in other collision avoidance systems for tele-operated UAVs. Our method i) can handle situations where there is no input from the user by actively stopping and proceeding to avoid obstacles, ii) allows the operator to slide between prioritizing staying away from objects and getting close to them in a safe way when so required, and iii) provides for intuitive control by not deviating too far from the control input of the operator. We demonstrate the effectiveness of the method in real world experiments with a physical hexacopter in different indoor scenarios. We also present simulation results where we compare controlling the UAV with and without our method activated.

  • 5.
    Duberg, Daniel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure2022Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 7, nr 2, s. 2487-2494Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We propose UFOExplorer, a fast and efficient exploration method that scales well with the environment size. An exploration paradigm driven by map updates is proposed to enable the robot to react quicker and to always move towards the optimal exploration goal. For each map update, a dense graph-based planning structure is updated and extended. The planning structure is then used to generate a path using a simple exploration heuristic, which guides the robot towards the closest exploration goal. The proposed method scales well with the environment size, as the planning cost is amortized when updating and extending the planning structure. The simple exploration heuristic performs on par with the most recent state-of-the-art methods in smaller environments and outperforms them in larger environments, both in terms of exploration speed and computational efficiency. The implementation of the method is made available for future research.

  • 6.
    Duberg, Daniel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown2020Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 5, nr 4, s. 6411-6418Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    3D models are an essential part of many robotic applications. In applications where the environment is unknown a-priori, or where only a part of the environment is known, it is important that the 3D model can handle the unknown space efficiently. Path planning, exploration, and reconstruction all fall into this category. In this letter we present an extension to OctoMap which we call UFOMap. UFOMap uses an explicit representation of all three states in the map, i.e., unknown, free, and occupied. This gives, surprisingly, a more memory efficient representation. We provide methods that allow for significantly faster insertions into the octree. Furthermore, UFOMap supports fast queries based on occupancy state using so called indicators and based on location by exploiting the octree structure and bounding volumes. This enables real-time colored octree mapping at high resolution (below 1 cm). UFOMap is contributed as a C++ library that can be used standalone but is also integrated into ROS.

  • 7.
    Duberg, Daniel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    von Platen, Edvin
    Khoche, Ajinkya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    UFOMap: For Consumers and Producers of Stuff and Things in a TreeManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    For autonomous robots to have a deeper understanding of their environment, non-geometric, or semantic information, is required. However, there is currently a gap between the producers and consumers of dense semantic maps. Where producers are focused on reconstruction accuracy but not usability. We introduce an efficient semantic extension of the octree-based online 3D volumetric mapping framework UFOMap, for storing non-geometric information and to bridge this gap. By using a general semantic representation with a compact and dynamic data structure, our framework is capable of building large-scale semantic maps in real time. Benchmarks show that this semantic representation has more than an order of magnitude lower memory footprint than other approaches and up to three orders of magnitude faster queries of information. For example, UFOMap can construct truly large-scale volumetric semantic maps in real-time at high resolution. The framework is available as a standalone open source repository at https://github.com/UnknownFreeOccupied/ufomap and integrated with the Robot Operating System (ROS).

  • 8.
    Ericson, Ludvig
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Understanding greediness in map-predictive exploration planning2021Ingår i: 2021 10th European Conference on Mobile Robots, ECMR 2021 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2021Konferensbidrag (Refereegranskat)
    Abstract [en]

    In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.

  • 9.
    Khoche, Ajinkya
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL. Scania CV AB, S-15187 Södertälje, Sweden..
    Wozniak, Maciej K.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Semantic 3D Grid Maps for Autonomous Driving2022Ingår i: 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 2681-2688Konferensbidrag (Refereegranskat)
    Abstract [en]

    Maps play a key role in rapidly developing area of autonomous driving. We survey the literature for different map representations and find that while the world is threedimensional, it is common to rely on 2D map representations in order to meet real-time constraints. We believe that high levels of situation awareness require a 3D representation as well as the inclusion of semantic information. We demonstrate that our recently presented hierarchical 3D grid mapping framework UFOMap meets the real-time constraints. Furthermore, we show how it can be used to efficiently support more complex functions such as calculating the occluded parts of space and accumulating the output from a semantic segmentation network.

  • 10.
    $$$Linard, Alexis
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44; Division of Robotics, Perception and Learning, Division of Robotics, Perception and Learning.
    $$$Gautier, Anna
    KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44; Division of Robotics, Perception and Learning, Division of Robotics, Perception and Learning.
    $$$Duberg, Daniel
    KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44; Division of Robotics, Perception and Learning, Division of Robotics, Perception and Learning.
    $$$Tumova, Jana
    KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44; Division of Robotics, Perception and Learning, Division of Robotics, Perception and Learning.
    Robust MITL planning under uncertain navigation times2024Ingår i: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Institute of Electrical and Electronics Engineers Inc. , 2024, s. 2498-2504Konferensbidrag (Refereegranskat)
    Abstract [en]

    In environments like offices, the duration of a robot's navigation between two locations may vary over time. For instance, reaching a kitchen may take more time during lunchtime since the corridors are crowded with people heading the same way. In this work, we address the problem of routing in such environments with tasks expressed in Metric Interval Temporal Logic (MITL)-a rich robot task specification language that allows us to capture explicit time requirements. Our objective is to find a strategy that maximizes the temporal robustness of the robot's MITL task. As the first step towards a solution, we define a Mixed-integer linear programming approach to solving the task planning problem over a Varying Weighted Transition System, where navigation durations are deterministic but vary depending on the time of day. Then, we apply this planner to optimize for MITL temporal robustness in Markov Decision Processes, where the navigation durations between physical locations are uncertain, but the time-dependent distribution over possible delays is known. Finally, we develop a receding horizon planner for Markov Decision Processes that preserves guarantees over MITL temporal robustness. We show the scalability of our planning algorithms in simulations of robotic tasks.

  • 11.
    Nguyen, Thien-Minh
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Yuan, Shenghai
    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore..
    Xie, Lihua
    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore..
    SLICT: Multi-Input Multi-Scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping2023Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 8, nr 4, s. 2102-2109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    While feature association to a global map has significant benefits, to keep the computations from growing exponentially, most lidar-based odometry and mapping methods opt to associate features with local maps at one voxel scale. Taking advantage of the fact that surfels (surface elements) at different voxel scales can be organized in a tree-like structure, we propose an octree-based global map of multi-scale surfels that can be updated incrementally. This alleviates the need for recalculating, for example, a k-d tree of the whole map repeatedly. The system can also take input from a single or a number of sensors, reinforcing the robustness in degenerate cases. We also propose a point-to-surfel (PTS) association scheme, continuous-time optimization on PTS and IMU preintegration factors, along with loop closure and bundle adjustment, making a complete framework for Lidar-Inertial continuous-time odometry and mapping. Experiments on public and in-house datasets demonstrate the advantages of our system compared to other state-of-the-art methods.

  • 12.
    Selin, Magnus
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS. Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden.
    Tiger, Maths
    Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden..
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Heintz, Fredrik
    Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden..
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Efficient Autonomous Exploration Planning of Large-Scale 3-D Environments2019Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 4, nr 2, s. 1699-1706Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Exploration is an important aspect of robotics, whether it is for mapping, rescue missions, or path planning in an unknown environment. Frontier Exploration planning (FEP) and Receding Horizon Next-Best-View planning (RH-NBVP) are two different approaches with different strengths and weaknesses. FEP explores a large environment consisting of separate regions with ease, but is slow at reaching full exploration due to moving back and forth between regions. RH-NBVP shows great potential and efficiently explores individual regions, but has the disadvantage that it can get stuck in large environments not exploring all regions. In this letter, we present a method that combines both approaches, with FEP as a global exploration planner and RH-NBVP for local exploration. We also present techniques to estimate potential information gain faster, to cache previously estimated gains and to exploit these to efficiently estimate new queries.

  • 13.
    Zhang, Qingwen
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Duberg, Daniel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    Geng, Ruoyu
    Robotics Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
    Jia, Mingkai
    Robotics Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
    Wang, Lujia
    Robotics Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
    A Dynamic Points Removal Benchmark in Point Cloud Maps2023Ingår i: 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023, s. 608-614Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the field of robotics, the point cloud has become an essential map representation. From the perspective of downstream tasks like localization and global path planning, points corresponding to dynamic objects will adversely affect their performance. Existing methods for removing dynamic points in point clouds often lack clarity in comparative evaluations and comprehensive analysis. Therefore, we propose an easy-to-extend unified benchmarking framework for evaluating techniques for removing dynamic points in maps. It includes refactored state-of-art methods and novel metrics to analyze the limitations of these approaches. This enables researchers to dive deep into the underlying reasons behind these limitations. The benchmark makes use of several datasets with different sensor types. All the code and datasets related to our study are publicly available for further development and utilization.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf