kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. de Haas, M.
    et al.
    Vogt, P.
    van den Berghe, R.
    Leseman, P.
    Oudgenoeg-Paz, O.
    Willemsen, Bram
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system.
    de Wit, J.
    Krahmer, E.
    Engagement in longitudinal child-robot language learning interactions: Disentangling robot and task engagement2022Ingår i: International Journal of Child-Computer Interaction, ISSN 2212-8689, E-ISSN 2212-8697, Vol. 33, artikel-id 100501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study investigated a seven sessions interaction between a peer-tutor robot and Dutch preschoolers (5 years old) during which the children learned English. We examined whether children's engagement differed when interacting with a tablet and a robot using iconic gestures, with a tablet and a robot using no iconic gestures and with only a tablet. Two engagement types were annotated (task engagement and robot engagement) using a novel coding scheme based on an existing coding scheme used in kindergartens. The findings revealed that children's task engagement dropped over time in all three conditions, consistent with the novelty effect. However, there were no differences between the different conditions for task engagement. Interestingly, robot engagement showed a difference between conditions. Children were more robot engaged when interacting with a robot using iconic gestures than without iconic gestures. Finally, when comparing children's word knowledge with their engagement, we found that both task engagement and robot engagement were positively correlated with children's word retention. 

  • 2.
    De Wit, Jan
    et al.
    Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands.
    Willemsen, Bram
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    De Haas, Mirjam
    Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands.
    Van Den Berghe, Rianne
    Department of Development of Youth and Education in Diverse Societies, Utrecht University, Utrecht, the Netherlands; Section Leadership in Education and Development, Windesheim University of Applied Sciences, Almere, the Netherlands.
    Leseman, Paul
    Department of Development of Youth and Education in Diverse Societies, Utrecht University, Utrecht, the Netherlands.
    Oudgenoeg-Paz, Ora
    Department of Development of Youth and Education in Diverse Societies, Utrecht University, Utrecht, the Netherlands.
    Verhagen, Josje
    Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, the Netherlands.
    Vogt, Paul
    School of Communication, Media & IT, Hanze University of Applied Sciences, Groningen, the Netherlands.
    Krahmer, Emiel
    Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands.
    Designing and Evaluating Iconic Gestures for Child-Robot Second Language Learning2021Ingår i: Interacting with computers, ISSN 0953-5438, E-ISSN 1873-7951, Vol. 33, nr 6, s. 596-626Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we examine the process of designing robot-performed iconic hand gestures in the context of a long-Term study into second language tutoring with children of approximately 5 years old. We explore four factors that may relate to their efficacy in supporting second language tutoring: The age of participating children; differences between gestures for various semantic categories, e.g. measurement words, such as small, versus counting words, such as five; the quality (comprehensibility) of the robot's gestures; and spontaneous reenactment or imitation of the gestures. Age was found to relate to children's learning outcomes, with older children benefiting more from the robot's iconic gestures than younger children, particularly for measurement words. We found no conclusive evidence that the quality of the gestures or spontaneous reenactment of said gestures related to learning outcomes. We further propose several improvements to the process of designing and implementing a robot's iconic gesture repertoire.

  • 3.
    Skantze, Gabriel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Willemsen, Bram
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    CoLLIE: Continual Learning of Language Grounding from Language-Image Embeddings2022Ingår i: The journal of artificial intelligence research, ISSN 1076-9757, E-ISSN 1943-5037, Vol. 74, s. 1201-1223Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents CoLLIE: a simple, yet effective model for continual learning of how language is grounded in vision. Given a pre-trained multimodal embedding model, where language and images are projected in the same semantic space (in this case CLIP by OpenAI), CoLLIE learns a transformation function that adjusts the language embeddings when needed to accommodate new language use. This is done by predicting the difference vector that needs to be applied, as well as a scaling factor for this vector, so that the adjustment is only applied when needed. Unlike traditional few-shot learning, the model does not just learn new classes and labels, but can also generalize to similar language use and leverage semantic compositionality. We verify the model's performance on two different tasks of identifying the targets of referring expressions, where it has to learn new language use. The results show that the model can efficiently learn and generalize from only a few examples, with little interference with the model's original zero-shot performance.

  • 4.
    van den Berghe, Rianne
    et al.
    Univ Utrecht, Dept Dev Youth & Educ Diverse Soc, Utrecht, Netherlands.;Windesheim Univ Appl Sci, Sect Leadership Educ & Dev, Almere, Netherlands..
    Oudgenoeg-Paz, Ora
    Univ Utrecht, Dept Dev Youth & Educ Diverse Soc, Utrecht, Netherlands..
    Verhagen, Josje
    Univ Amsterdam, Amsterdam Ctr Language & Commun, Amsterdam, Netherlands..
    Brouwer, Susanne
    Radboud Univ Nijmegen, Dept Modern Languages & Cultures, Nijmegen, Netherlands..
    de Haas, Mirjam
    Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands..
    de Wit, Jan
    Tilburg Univ, Dept Commun & Cognit, Tilburg, Netherlands..
    Willemsen, Bram
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.
    Vogt, Paul
    Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.;Hanze Univ Appl Sci, Sch Commun Media & IT, Groningen, Netherlands..
    Krahmer, Emiel
    Tilburg Univ, Dept Commun & Cognit, Tilburg, Netherlands..
    Leseman, Paul
    Univ Utrecht, Dept Dev Youth & Educ Diverse Soc, Utrecht, Netherlands..
    Individual Differences in Children's (Language) Learning Skills Moderate Effects of Robot-Assisted Second Language Learning2021Ingår i: Frontiers in Robotics and AI, E-ISSN 2296-9144, Vol. 8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The current study investigated how individual differences among children affect the added value of social robots for teaching second language (L2) vocabulary to young children. Specifically, we investigated the moderating role of three individual child characteristics deemed relevant for language learning: first language (L1) vocabulary knowledge, phonological memory, and selective attention. We expected children low in these abilities to particularly benefit from being assisted by a robot in a vocabulary training. An L2 English vocabulary training intervention consisting of seven sessions was administered to 193 monolingual Dutch five-year-old children over a three- to four-week period. Children were randomly assigned to one of three experimental conditions: 1) a tablet only, 2) a tablet and a robot that used deictic (pointing) gestures (the no-iconic-gestures condition), or 3) a tablet and a robot that used both deictic and iconic gestures (i.e., gestures depicting the target word; the iconic-gestures condition). There also was a control condition in which children did not receive a vocabulary training, but played dancing games with the robot. L2 word knowledge was measured directly after the training and two to four weeks later. In these post-tests, children in the experimental conditions outperformed children in the control condition on word knowledge, but there were no differences between the three experimental conditions. Several moderation effects were found. The robot's presence particularly benefited children with larger L1 vocabularies or poorer phonological memory, while children with smaller L1 vocabularies or better phonological memory performed better in the tablet-only condition. Children with larger L1 vocabularies and better phonological memory performed better in the no-iconic-gestures condition than in the iconic-gestures condition, while children with better selective attention performed better in the iconic-gestures condition than the no-iconic-gestures condition. Together, the results showed that the effects of the robot and its gestures differ across children, which should be taken into account when designing and evaluating robot-assisted L2 teaching interventions.

  • 5.
    Willemsen, Bram
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    On Referring Language Use in Visually Grounded Dialogue2023Ingår i: YRRSDS 2023 - 19th Annual Meeting of the Young Researchers' Roundtable on Spoken Dialogue Systems, Proceedings of the Workshop, Association for Computational Linguistics (ACL) , 2023, s. 21-23Konferensbidrag (Refereegranskat)
  • 6.
    Willemsen, Bram
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Kalpakchi, Dmytro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Skantze, Gabriel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Collecting Visually-Grounded Dialogue with A Game Of Sorts2022Ingår i: Proceedings of the 13th Conference on Language Resources and Evaluation / [ed] Calzolari, N Bechet, F Blache, P Choukri, K Cieri, C Declerck, T Goggi, S Isahara, H Maegaard, B Mazo, H Odijk, H Piperidis, S, European Language Resources Association (ELRA) , 2022, s. 2257-2268Konferensbidrag (Refereegranskat)
    Abstract [en]

    An idealized, though simplistic, view of the referring expression production and grounding process in (situated) dialogue assumes that a speaker must merely appropriately specify their expression so that the target referent may be successfully identified by the addressee. However, referring in conversation is a collaborative process that cannot be aptly characterized as an exchange of minimally-specified referring expressions. Concerns have been raised regarding assumptions made by prior work on visually-grounded dialogue that reveal an oversimplified view of conversation and the referential process. We address these concerns by introducing a collaborative image ranking task, a grounded agreement game we call “A Game Of Sorts”. In our game, players are tasked with reaching agreement on how to rank a set of images given some sorting criterion through a largely unrestricted, role-symmetric dialogue. By putting emphasis on the argumentation in this mixed-initiative interaction, we collect discussions that involve the collaborative referential process. We describe results of a small-scale data collection experiment with the proposed task. All discussed materials, which includes the collected data, the codebase, and a containerized version of the application, are publicly available.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Willemsen, Bram
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Qian, Livia
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Skantze, Gabriel
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Tal, musik och hörsel, TMH.
    Resolving References in Visually-Grounded Dialogue via Text Generation2023Ingår i: Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue / [ed] David Schlangen, Svetlana Stoyanchev, Shafiq Joty, Ondrej Dusek, Casey Kennington, Malihe Alikhani, Prague, Czechia: Association for Computational Linguistics (ACL) , 2023, s. 457-469Konferensbidrag (Refereegranskat)
    Abstract [en]

    Vision-language models (VLMs) have shown to be effective at image retrieval based on simple text queries, but text-image retrieval based on conversational input remains a challenge. Consequently, if we want to use VLMs for reference resolution in visually-grounded dialogue, the discourse processing capabilities of these models need to be augmented. To address this issue, we propose fine-tuning a causal large language model (LLM) to generate definite descriptions that summarize coreferential information found in the linguistic context of references. We then use a pretrained VLM to identify referents based on the generated descriptions, zero-shot. We evaluate our approach on a manually annotated dataset of visually-grounded dialogues and achieve results that, on average, exceed the performance of the baselines we compare against. Furthermore, we find that using referent descriptions based on larger context windows has the potential to yield higher returns.

1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf