Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Lindh, Erik L.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Johansson, Mats K.G.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials2016Ingår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 134, s. 175-183Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wide-spread use of cellulose nanofibril (CNF) biocomposites and nanomaterials is limited by CNF moisture sensitivity due to surface hydration. We report on a versatile and scalable interface tailoring route for CNF to address this, based on technically important epoxide chemistry. Bulk impregnation of epoxide-amine containing liquids is used to show that CNF hydroxyls can react with epoxides at high rates and high degree of conversion to form covalent bonds. Reactions take place inside nanostructured CNF networks under benign conditions, and are verified by solid state NMR. Epoxide modified CNF nanopaper shows significantly improved mechanical properties under moist and wet conditions. High resolution microscopy is used in fractography studies to relate the property differences to structural change. The cellulose-epoxide interface tailoring concept is versatile in that the functionality of molecules with epoxide end-groups can be varied over a wide range. Furthermore, epoxide reactions with nanocellulose can be readily implemented for processing of moisture-stable, tailored interface biocomposites in the form of coatings, adhesives and molded composites.

  • 2.
    Lindh, Erik L
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Cellulose-water interaction: a spectroscopic study2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The human society of today has a significantly negative impact on the environment and needs to change its way of living towards a more sustainable path if to continue to live on a healthy planet. One path is believed to be an increased usage of naturally degradable and renewable raw materials and, therefore, attention has been focused on the highly abundant biopolymer cellulose. However, a large drawback with cellulose-based materials is the significant change of their mechanical properties when in contact with water. Despite more than a century of research, the extensively investigated interaction between water and cellulose still possesses many unsettled questions, and if the answer to those were known, cellulose-based materials could be more efficiently utilized.

    It is well understood that one interaction between cellulose and water is through hydrogen bonds, established between water and the hydroxyl groups of the cellulose. Due to the very similar properties of the hydroxyl groups in water and the hydroxyl groups of the cellulose, the specific interaction-induced effect on the hydroxyl groups at a cellulose surface is difficult to investigate.  Therefore, a method based on 2H MAS NMR spectroscopy has been developed and validated in this work. Due to the verified ability of the methodology to provide site-selective information regarding the molecular dynamics of the cellulose deuteroxyl groups (i.e. deuterium-exchanged hydroxyl groups), it was shown by investigating 1H-2H exchanged cellulose samples that only two of the three accessible hydroxyl groups (on the surface of cellulose fibrils) exchange with water. This finding was also verified by FT-IR spectroscopy, and together with MD simulations we could establish that it is O(2)H and O(6)H hydroxyl groups (of the constituting glucose units) that exchange with water. From the MD simulations additional conclusion could be drawn regarding the molecular interactions required for hydrogen exchange; an exchanging hydroxyl group needs to donate its hydrogen in a hydrogen bond to water.

    Exchange kinetics of thin cellulose films were investigated by monitoring two different exchange processes with FT-IR spectroscopy. Specific information about the two exchanging hydroxyl/deuteroxyl groups was then extracted by deconvoluting the changing intensities of the recorded IR spectra. It was recognized that the exchange of the hydroxyl groups were well described by a two-region model, which was assessed to correspond to two fibrillary surfaces differentiated by their respective positions in the fibril aggregate. From the detailed deconvolution it was also possible to estimate the fraction of these two surfaces, which indicated that the average aggregate of cotton cellulose is built up by three to four fibrils.                      

    2H MAS NMR spectroscopy was used to examine different states of water in cellulose samples, hydrated at different relative humidities of heavy water. The results showed that there exist two states of water adsorbed onto the cellulose, differentiated by distinct different mobilities. These two states of water are well separated and had negligible exchange on the time scale of the experiments. It was suggested that they are located at the internal and external surfaces of the fibril aggregates.

    By letting cellulose nanofibrils undergo an epoxidation reaction with a mono epoxide some indicative results regarding how to protect the cellulose material from the negative impact of water were presented. The protecting effect of the epoxidation were examined by mechanically testing and NMR spectroscopy. It was proposed that by changing the dominant interaction between the fibril aggregates from hydrophilic hydrogen bonds to hydrophobic π-interactions the sensitivity to moisture was much reduced. The results also indicated that the relative reduction in moisture sensitivity was largest for the samples with highest moisture content.

  • 3.
    Lindh, Erik L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Terenzi, Camilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salmén, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Furó, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Non-exchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water2016Ingår i: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 434, s. 136-142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interaction of water with cellulose stages many unresolved questions. Here 2H MAS NMR and IR spectra recorded under carefully selected conditions in 1H-2H exchanged, and re-exchanged, cellulose samples are presented. It is shown here, by a quantitative and robust approach, that only two of the three available hydroxyl groups on the surface of cellulose fibrils are exchanging their hydrogen with the surrounding water molecules. This finding is additionally verified and explained by MD simulations which demonstrate that the 1HO(2) and 1HO(6) hydroxyl groups of the constituting glucose units act as hydrogen-bond donors to water, while the 1HO(3) groups behave exclusively as hydrogen-bond acceptors from water and donate hydrogen to their intra-chain neighbors O(5). We conclude that such a behavior makes the latter hydroxyl group unreactive to hydrogen exchange with water.

  • 4.
    Lindh, Erik L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Salmén, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Surface accessibility of cellulose fibrils studied by hydrogen-deuterium exchange with water2016Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, nr 1, s. 21-33Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A problem with cellulose-based materials is that they are highly influenced by moisture, leading to reduced strength properties with increasing moisture content. By achieving a more detailed understanding of the water–cellulose interactions, the usage of cellulose-based materials could be better optimized. Two different exchange processes of cellulose hydroxyl/deuteroxyl groups have been monitored by transmission FT-IR spectroscopy. By using line-shape-assisted deconvolution of the changing intensities, we have been able to follow the exchange kinetics in a very detailed and controlled manner. The findings reveal a hydrogen exchange that mainly is located at two different kinds of fibril surfaces, where the differences arise from the water accessibility of that specific surface. The slowly accessible regions are proposed to be located between the fibrils inside of the aggregates, and the readily accessible regions are suggested to be at the surfaces of the fibril aggregates. It was also possible to identify the ratio of slowly and readily accessible surfaces, which indicated that the average aggregate of cotton cellulose is built up by approximately three fibrils with an assumed average size of 12 × 12 cellulose chains. Additionally, the experimental setup enabled visualizing and discussing the implications of some of the deviating spectral features that are pronounced when recording FT-IR spectra of deuterium-exchanging cellulose: the insufficient red shift of the stretching vibrations and the vastly decreasing line widths.

  • 5.
    Lindh, Erik L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Stilbs, Peter
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Site-resolved H-2 relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra2016Ingår i: Journal of magnetic resonance, ISSN 1090-7807, E-ISSN 1096-0856, Vol. 268, s. 18-24Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate a way one can achieve good spectral resolution in H-2 MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the H-2 MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two H-2 spin populations with similar chemical shifts but different quadrupole splittings. In H-2-exchanged cellulose containing two H-2 spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  • 6.
    Lindh, Erik L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Terenzi, Camilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Salmén, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Identifying different hydroxyl populations in cellulose by 2H MAS NMR2015Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Artikel i tidskrift (Övrigt vetenskapligt)
  • 7.
    Lindh, Erik L
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Terenzi, Camilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Salmén, Lennart
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMRManuskript (preprint) (Övrigt vetenskapligt)
  • 8.
    Lindh, Erik L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Terenzi, Camilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salmén, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Furo, Istvan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by H-2 MAS NMR2017Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 6, s. 4360-4369Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The organization of water molecules adsorbed onto cellulose and the supramolecular hydrated structure of microfibril aggregates represents, still today, one of the open and complex questions in the physical chemistry of natural polymers. Here, we investigate by H-2 MAS NMR the mobility of water molecules in carefully H-2-exchanged, and thereafter re-dried, microcrystalline cellulose. By subtracting the spectral contribution of deuteroxyls from the spectrum of hydrated cellulose, we demonstrate the existence of two distinct (H2O)-H-2 spectral populations associated with mobile and immobile water environments, between which the water molecules do not exchange at the NMR observation time scale. We conclude that those two water phases are located at differently-accessible adsorption sites, here assigned to the cellulose surfaces between and within the microfibril aggregates, respectively. The superior performance of H-2 MAS NMR encourages further applications of the same method to other complex systems that expose heterogeneous hygroscopic surfaces, like wood cell walls.

1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf