Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Kim, D. -Y
    et al.
    Ih, J. -G
    Zhang, Zhe
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    A virtual herschel-quincke tube using slow sound2017Ingår i: INTER-NOISE 2017 - 46th International Congress and Exposition on Noise Control Engineering: Taming Noise and Moving Quiet, Institute of Noise Control Engineering , 2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    While an acoustic wave propagates along a duct, of which the wall is treated with either dissipative or a reactive material, the phase speed can be slowed down because of wave dispersion. It has been thought that such slow sound can be used for a novel control method to reduce the in-duct noise at low to medium frequencies generated from a fluid machinery system. In this work, the Herschel-Quincke tube (hereafter, H-Q tube), which exploits the path length difference of two parallel ducts, is modified to demonstrate the application potential of the slow sound. A test rig is designed to create the two different phase speeds by arranging the two parallel, equal-length ducts inside a main duct, one of them is hard-walled and the other one lined with a periodic array of resonators. This slow sound H-Q device is then modelled by both analytical and numerical methods assuming a plane wave incidence. Also, an experiment is conducted to measure the transmission loss. The result reveals a low frequency peak (TL-30 dB) in the range of 200-400 Hz, which occurs far below the lowest resonance of the resonator. At the original resonance frequency of 691 Hz, a small attenuation (TL~6 dB) is obtained due to the fact that one duct is subject to a high loss, and the other is without appreciable loss. The result clearly demonstrates the potential of applying slow sound device to overcome the spatial limitation of the classical H-Q tube.

  • 2.
    Netto Spillere, Andre Mateus
    et al.
    Univ Fed Santa Catarina, Dept Mech Engn, BR-88040900 Florianopolis, SC, Brazil.;Univ Fed Santa Catarina, Acoust & Vibrat Lab, BR-88040900 Florianopolis, SC, Brazil..
    Zhang, Zhe
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Cordioli, Julio Apolinario
    Univ Fed Santa Catarina, Dept Mech Engn, BR-88040900 Florianopolis, SC, Brazil.;Univ Fed Santa Catarina, Acoust & Vibrat Lab, BR-88040900 Florianopolis, SC, Brazil..
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Optimum Impedance in the Presence of an Inviscid Sheared Flow2019Ingår i: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 57, nr 3, s. 1044-1054Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent years, much effort has been devoted to find the "optimum impedance" (i.e., the impedance that results in the maximum modal decay rate in flow duct acoustics for a given frequency, Mach number, and azimuthal mode order). Although such analysis can be carried out by means of numerical simulations, analytical expressions can also be derived to predict the optimum impedance. Previous works have been concerned with the optimum impedance of higher-order modes in rectangular ducts with uniform flow. In this work, the analysis is expanded to circular ducts for both uniform and sheared inviscid flows. Focus is given to typical operating conditions found in turbofan engine intakes and vehicle exhaust systems. It is shown that, in certain conditions, the optimum impedance is affected even by the presence of a small boundary-layer thickness. It is also noted that, for low Helmholtz numbers, the optimum impedance may have a negative resistance.

  • 3. Spillere, A. M. N.
    et al.
    Zhang, Zhe
    KTH.
    Cordioli, J. A.
    Åbom, Mats
    KTH.
    Bodén, Hans
    KTH.
    Optimum impedance in the presence of an inviscid sheared flow2018Ingår i: 2018 AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics, 2018, artikel-id AIAA 2018-3777Konferensbidrag (Refereegranskat)
    Abstract [en]

    In recent years, much effort has been devoted to find the “optimum impedance” i.e. the impedance that results in the maximum modal decay rate in flow duct acoustics. Although such analysis can be carried out by means of numerical simulations, analytical expressions can also be derived in order to predict the optimum impedance. Previous works have been concerned over the optimum impedance of higher order modes in rectangular ducts with uniform flow. In this work, the analysis is expanded to circular and rectangular ducts for both uniform and sheared inviscid flows. Focus is given on a typical aero-engine intake and flight conditions. It is shown that, in certain conditions, the optimum impedance is affected even by the presence of a small boundary layer thickness. It is also noted that for low Helmholtz numbers the optimum impedance may have a negative resistance.

  • 4.
    Zhang, Zhe
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Optimal damping and slow sound in ducts2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Denna avhandling har till syfte att öka kunskapen om akustiska problem i kanaler, inklusive: 1) optimal dämpning av lågfrekvent ljud och; 2) utveckling och tillämpning av ‘slow sound’.När det gäller det första problemet, har ‘Cremer-impedansen’, som föreslogs för mer än ett halvt sekel sedan studerats och vidareutvecklats. Detta möjliggör nya tillämpningar svarande mot lågfrekvent ljud som insugnings- och avgassystem för fordon samt ventilationssystem. En ‘exakt’ lösning av Cremer-impedansen för rektangulära kanaler med en ljuddämpande vägg giltig i lågfrekvensområdet har härletts. En väsentlig förbättring av lågfrekvent dämpning har uppnåtts med denna lösning vilket även validerats med mätningar.Emellertid har den exakta lösningen av Cremer-impedansen en negativ realdel (‘resistans’) i lågfrekvensområdet, vilket betyder att en aktiv väggbeklädnad är nödvändig för att åstadkomma optimal dämpning. Två undersökningar av den negativa resistansen har genomförts för att studera om dessa lösningar är realiserbara. I den första ändrades randvillkoret för att inkludera gränsskikt i strömningen. Resultatet visade att negativ resistans erhålls i de flesta fall även med det modifierade randvillkoret. I den andra studerades lösningens giltighet i det komplexa vågtalsplanet. Resultatet visade att lösningen nedströms alltid är giltig medan vissa lösningar uppströms i lågfrekvensområdet är ogiltiga. Detta resultat gäller i princip för alla vågor eller moder i en kanal.När det gäller det andra problemet undersöktes möjligheterna att skapa ‘slow sound’, dvs ljud som utbreder sig mycket långsammare än normalt, genom att utnyttja ett resonant periodiskt system i en kanal i lågfrekvensområdet. Detta kan ses som ett s.k. akustiskt metamaterial och kan nyttjas för att med hjälp av starka ljudvågor påverka små partiklar som tvingas att kollidera och bli större. En studie om denna metod för sammanslagning av partiklar (‘particle agglomeration’) kan nyttjas för avgasrening har genomförts. Metoden är teoretiskt möjlig men begränsad av att tekniken för att skapa ‘slow sound’ inte bara saktar ned ljudvågen utan även dämpar dess amplitud och därigenom minska ljudvågens påverkan på partiklar.

  • 5.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    The Cremer Impedance: An Investigation of the Low Frequency BehaviorManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The Cremer impedance, first proposed by Cremer (1953) and then extended by Tester (1973), is supposed to give the maximum propagation damping in an infinitely long waveguide. Previous works including a uniform grazing flow have shown negative resistance in the low frequency range for both circular and 2-D rectangular waveguides, i.e., implying an active boundary. In order to further analyze the low frequency behaviour of the Cremer impedance, especially the negative resistance, two investigations are conducted in the current work. First, the previously used Ingard-Myers boundary condition is replaced by the Brambley boundary condition with the introduction of a thin inviscid boundary layer, and results obtained with the two boundary conditions are compared to see the effect of a sheared flow. The frequency range where the two boundary conditions can be applied is also analyzed. Second, discussions regarding the validity of the low frequency result in both the up- and downstream directions from the perspective of mode-merging are presented. This analysis is further extended from the fundamental mode to higher order modes in the frequency range where they are ‘just cut-on’.

  • 6.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    The Cremer impedance: An investigation of the low frequency behavior2019Ingår i: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 459, artikel-id 114844Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Cremer impedance concept based on mode merging is one method that can substantially improve the axial damping in a waveguide. Previous works on the Cremer impedance including a uniform grazing flow have exhibited unexpected phenomenon such as negative resistance in the low frequency range. The current paper is a continuation of earlier works by the authors to extend the investigation of the Cremer impedance with a focus on the low frequency range. Two independent investigations from the perspective of boundary layer effects and mode merging patterns are conducted to better understand the low frequency behavior of the Cremer impedance.

  • 7.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Lin, D.
    Xiaodong, J.
    Investigation of the 'exact' cremer impedance2018Ingår i: 25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling, International Institute of Acoustics and Vibration, IIAV , 2018, s. 1810-1817Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester's work is that it simplified the analysis on the effect of flow by only considering high frequencies or the 'well cut-on' modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest such as the vehicle intake and exhaust systems. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the 'exact' solution of Cremer impedance, which reveals an appreciable difference between the exact and classic solution in the low frequency range. A measurement campaign is here carried out to experimentally demonstrate such difference. In addition, the exact solution is found to exhibit some special properties at very low frequencies, e.g., a negative resistance. One can question if this negative resistance is physically correct or an artefact of the assumption of a plug flow profile and the use of the so-called Ingard-Myers boundary condition. To investigate this the Cremer solution is here extended to the case with a more general and realistic flow profile, using a modified version of the Ingard-Myers condition suggested by Brambley (AIAA J 49(6), 2011).

  • 8.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Tiikoja, Heiki
    KTH.
    Peerlings, Luck
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Experimental Analysis on the 'Exact' Cremer Impedance in Rectangular Ducts2018Ingår i: SAE technical paper series, ISSN 0148-7191, Vol. 2018-June, nr JuneArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester's work is that it simplified the analysis on the effect of flow by only considering high frequencies or the 'well cut-on' modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the 'exact' solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level. In addition, the exact solution is found to exhibit some special properties at very low frequencies, e.g., a negative resistance. In this paper, liners designed on the basis of the exact solution are tested and the difference between the exact and classic solution in the low frequency range (not low enough to go into the negative resistance region) is experimentally investigated.

  • 9.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Tiikoja, Heiki
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Experimental analysis of whistle noise in a particle agglomeration pipe2018Ingår i: INTER-NOISE 2018 - 47th International Congress and Exposition on Noise Control Engineering: Impact of Noise Control Engineering, Institute of Noise Control Engineering , 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    A self-sustained sound, more usually known as a whistle, refers to a distinct tonal noise created due to the interaction between the sound and flow field. When a positive feedback loop is formed between the two fields, the energy in the mean flow will be transferred into the sound wave, thus giving rise to a whistle. In engineering practice, whistles are destructive as they can produce high sound and vibration levels and may result in risk for mechanical failures. In this work, a flow-related high level tonal noise was found during a measurement on a particle agglomeration pipe, which is a quasi-periodic corrugated structure designed for the exhaust system of heavy-duty trucks. The purpose of the pipe is to enhance particle agglomeration to increase the size of exhaust gas particles. To investigate the origin of the detected tonal noise additional measurements were carried out. Based on the measurement result, the aero-acoustic coupling in the agglomeration pipe was analyzed, revealing that the pipe has a large potentiality to amplify the incident sound power in the presence of a mean flow. Furthermore, the Nyquist stability criterion was applied to confirm the existence of exponentially growing modes in the system at certain conditions.

  • 10.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
    ‘Double-’ and ‘Triple-root’ Cremer Impedancefor a Rectangular Duct with Opposite Lined WallsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    To achieve high low frequency damping in an infinitely long double-lined rectangular duct with zero mean flow, the optimization of axial sound attenuation in the sense defined by Cremer (i.e., using the ‘Cremer impedance/solution’ concept) is examined for the fundamental mode. Two double-root Cremer impedance solutions that merge a mode pair into a single mode are presented. Different mode-merging patterns due to symmetry are found for these two solutions. As an extension, two triple-root Cremer impedance solutions (including one with a negative resistance) that merge three modes are also provided by extending the optimum condition proposed by Cremer. The two triple root solutions are theoretically advantageous in damping compared with the double root solutions, and the advantage is explained from the perspective of mode-merging.

  • 11.
    Zhang, Zhe
    et al.
    KTH, Skolan för teknikvetenskap (SCI).
    Åbom, Mats
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Bodén, Hans
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Karlsson, Mikael
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Katoshevski, D.
    Particle Number Reduction in Automotive Exhausts Using Acoustic Metamaterials2017Ingår i: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, nr 4, s. 1566-1572Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count.The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration. The oscillating flow may simply be hydrodynamic or as assumed here: the flow oscillations are created by sound propagation rather than hydrodynamic approaches. An analysis is presented which gives the relationship between the speed of sound, the mean flow velocity and the amplitude of the acoustic particle velocity for particle agglomeration to be feasible. It is shown that it can be achieved if the convective speed of sound is reduced to the same order as the mean flow velocity. It is therefore suggested to use the so-called acoustic metamaterials, which can help control, direct and manipulate sound waves. At this stage a phenomenological 1D model is used for the analysis, which allows the authors to build an understanding of the effect of the sound waves and flow oscillations on particle motion and paves the way for further analysis on particle agglomeration.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf