Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bekele, Abiy
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Application of Automated Non-contact Resonance Testing for Low Temperature Behavior of Asphalt Concrete2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Impact resonance testing is a well-documented non-destructive testing method and its applications on asphalt concrete have also been implemented successfully. The test is carried out manually by inducing an impact in order to excite the test specimen and taking measurements of the vibrational response. In an effort to improve the manual procedure of impact resonance testing, an automated non-contact methodology is developed and its applicability with regards to low temperature behaviors of asphalt concrete is investigated. Results from this work show that repeatable fundamental resonance frequency measurements can be performed on a disc shaped specimen in an automated manner without the need to open the thermal chamber. The measurements obtained from the new method have been verified by taking similar resonance frequency measurements using an instrumented impact hammer. It has also been shown in this work that the proposed method is suitable to investigate the lone effects of cyclic thermal conditioning on asphalt concrete without any other possible biasing effects associated with contact in the conventional testing. A hysteretic behavior of stiffness modulus is obtained on three different asphalt concrete specimens subjected to repeated low temperature cyclic conditioning. Reduced modulus values at each temperature are obtained in all the tested specimens after a low temperature stepwise conditioning at temperatures from 0oC to -40 oC. This observed behavior shows that the dynamic modulus of the tested specimens is affected by low temperature conditioning. The norm of the complex modulus decreases and the phase angle or damping ratio increases after low temperature conditioning. Hence, valuable and practical low temperature characteristics of different asphalt concrete mixtures can possibly be obtained by using the proposed methodology.

  • 2.
    Lundberg, Joacim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. VTI - Statens Väg- och Transportforskningsinstitut.
    Non-Exhaust PM10 and Road Dust2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Non-exhaust PM10 is an issue in the urban environment linked to health issues. Emissions of non-exhaust PM10 is relatable to pavement properties. Also of importance is resuspension of road dust stored from surfaces. This depends on the traffic and metrological conditions. Given this, the purpose of the thesis was to give an overview limited to Sweden and the Nordic countries regarding non-exhaust PM10 emissions and road dust.

    The overview includes how particles are related to human health. Also included is the principle of how particles are emitted from road surface and tyre interaction, both directly and through resuspension of road dust. This thesis also includes an overview of how the use of studded tyres impact on asphalt surfacings and how the properties of the materials used impact on the abrasion wear. This is then linked to the emissions of non-exhaust particles. Further described is how measurements can be done of ambient particles and road dust, followed on two major models for road abrasion wear and non-exhaust PM prediction. Also included is how road operation, e.g. traction sanding and dust binding, influence the particle emissions together with other options to reduce the emissions through, e.g. limiting the use of studded tyres.

    One special issue discussed in this thesis is the lack of holistic view regarding the environmental problems in the urban environment with focus on particle emissions and road noise emissions, both from the road surface and tyre interaction. Currently the most problematic issue is prioritized and the resulting solution to that specific problem might increase other problems.

    This thesis shows that much knowledge is available regarding non-exhaust PM10 emissions and road dust, but also that several knowledge gaps exists. Several suggestions on further studies is given together with a brief overview on the continued work forward from this thesis.

  • 3.
    Vieira, Tiago
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. VTI.
    Tyre-road Interaction: a holistic approach to noise and rolling resistance2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Energy dissipation, fuel consumption, real-estate property prices and health issues are some of the aspects related to the tyre/pavement interaction and its functional properties of rolling resistance and noise. The first two aspects are affected by the tyre/road interaction as energy is dissipated mostly by hysteretic losses as the tyre is subjected to dynamic deformations when contacting the pavement surface. The other effect of this contact system that is analysed in this thesis is noise. Excessive noise exposure leads to a decrease in real-estate property values and even health issues such as increased blood pressure, sleep disturbance, cognitive impairment in children, among others.

    To mitigate such issues, a good understanding of the underlying causes is crucial and therefore a holistic approach was used to analyse the contact interaction in a more comprehensive way, encompassing the pavement, tyre, environmental and contact media (contaminations). Both noise and rolling resistance were analysed after subjecting the contact system to controlled interventions in one variable while maintaining the other variables constant and then comparing to a reference condition. In the first part of the investigative work, different tyres were tested while maintaining the pavement, environment and contact media constant, allowing an evaluation of the impact of winter tyres on noise and rolling resistance. In the second part, an intervention in the pavement was applied while maintaining the other variables constant. allowing an evaluation of the impact of surface grinding on noise and rolling resistance.

    The first part quantified how noisier studded tyres are in comparison to non-studded tyres, yet no substantial difference in rolling resistance was found. The second part revealed the potential of the horizontal grinding to reduce noise and rolling resistance, having a limitation, on the duration of such effects, especially for Swedish roads where studded tyres are used.

  • 4.
    Onifade, Ibrahim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Development of a Morphology-based Analysis Framework for Asphalt Pavements2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The morphology of asphalt mixtures plays a vital role in their properties and behaviour. The work in this thesis is aimed at developing a fundamental understanding of the effect of the asphalt morphology on the strength properties and deformation mechanisms for development of morphology-based analysis framework for long-term response prediction. Experimental and computational methods are used to establish the relationship between the mixture morphology and response. Micromechanical modeling is employed to understand the complex interplay between the asphalt mixture constituents resulting in strain localization and stress concentrations which are precursors to damage initiation and accumulation. Based on data from actual asphalt field cores, morphology-based material models which considers the influence of the morphology on the long-term material properties with respect to damage resistance, healing and ageing are developed. The morphology-based material models are implemented in a hot-mix asphalt (HMA) fracture mechanics framework for pavement performance prediction. The framework is able to predict top-down cracking initiation to a reasonable extent considering the variability of the input parameters. A thermodynamic based model for damage and fracture is proposed. The results from the study show that the morphology is an important factor which should be taken into consideration for determining the short- and long-term response of asphalt mixtures. Further understanding of the influence of the morphology will lead to the development of fundamental analytical techniques in design to establish the material properties and response to loads. This will reduce the empiricism associated with pavement design, reduce need for extensive calibration and validation, increase the prediction capability of pavement design tools, and advance pavement design to a new level science and engineering.

  • 5.
    Peñaloza, Diego
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Exploring climate impacts of timber buildings: The effects from including non-traditional aspects in life cycle impact assessment2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare the climate impact from biobased materials with that from e.g. mineral based materials, mostly favouring biobased materials. Contradicting results have however been reported due to differences in methodology, as there is not yet consensus regarding certain aspects. The aim of this thesis is to study the implications from non-traditional practices in climate impact assessment of timber buildings, and to discuss the shortcomings of current practices when assessing such products and comparing them with non-renewable alternatives.

    The traditional practices for climate impact assessment of biobased materials have been identified, and then applied to a case study of a building with different timber frame designs and an alternative building with a concrete frame. Then, non-traditional practices were explored by calculating climate impact results using alternative methods to handle certain methodological aspects, which have been found relevant for forest products in previous research such as the timing of emissions, biogenic emissions, carbon storage in the products, end-of-life substitution credits, soil carbon disturbances and change in albedo. These alternative practices and their implications were also studied for low-carbon buildings.

    The use of non-traditional practices can affect the climate impact assessment results of timber buildings, and to some extent the comparison with buildings with lower content of biobased building materials. This effect is especially evident for energy-efficient buildings. Current normal practices tend to account separately for forest-related carbon flows and aspects such as biogenic carbon emissions and sequestration or effects from carbon storage in the products, missing to capture the forest carbon cycle as a whole. Climate neutrality of wood-based construction materials seems like a valid assumption for studies which require methodological simplification, while other aspects such as end-of-life substitution credits, soil carbon disturbances or changes in albedo should be studied carefully due to their potentially high implications and the uncertainties around the methods used to account for them. If forest phenomena are to be included in LCA studies, a robust and complete model of the forest carbon cycle should be used. Another shortcoming is the lack of clear communication of the way some important aspects were handled.

  • 6.
    Ghafoori Roozbahany, Ehsan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Investigation of asphalt compaction in vision of improving asphalt pavements2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Asphalt joints are potentially weakest parts of every pavement. Despite of their importance, reliable tools for measuring their mechanical properties for design and performance assessments are still scarce. This is particularly true for cold joints when attaching a new hot pavement to a cold existing one as in case of large patches for pavement repair. In this study, three static fracture testing methods, i.e. indirect tensile test (IDT), direct tension test (DTT) and 4 point bending (4PB), were adapted and used for evaluating different laboratory made joints. The results suggested that joints with inclined interfaces and also the ones with combined interface treatments (preheated and sealed) seemed to show more promising behaviors than the vertical and untreated joints. It was also confirmed that compacting from the hot side towards the joint improved the joint properties due to imposing a different flow pattern as compared to the frequent compaction methods. The latter finding highlighted the importance of asphalt particle rearrangements and flow during the compaction phase as a very little known subject in asphalt industry. Studies on compaction are of special practical importance since they may also contribute to reducing the possibility of over-compaction and aggregate crushing.

    Therefore, in this study, a new test method, i.e. Flow Test (FT), was developed to simulate the material flow during compaction. Initially, asphalt materials were substituted by geometrically simple model materials to lower the level of complexity for checking the feasibility of the test method as well as modeling purposes. X-ray radiography images were also used for capturing the flow patterns during the test. Results of the FT on model materials showed the capability of the test method to clearly distinguish between specimens with different characteristics. In addition, a simple discrete element model was applied for a better understanding of the test results as a basis for further improvements when studying real mixtures. Then, real mixtures were prepared and tested under the same FT configuration and the results were found to support the findings from the feasibility tests. The test method also showed its potential for capturing flow pattern differences among different mixtures even without using the X-ray. Therefore, the FT was improved as an attempt towards developing a systematic workability test method focusing on the flow of particles at early stages of compaction and was called the Compaction Flow Test (CFT).

    The CFT was used for testing mixtures with different characteristics to identify the parameters with highest impact on the asphalt particle movements under compaction forces. X-ray investigations during the CFT underlined the reliability of the CFT results. In addition, simple discrete element models were successfully generated to justify some of the CFT results.

  • 7.
    Källbom, Susanna
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Surface characterisation of thermally modified spruce wood and influence of water vapour sorption2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Today there is growing interest within the construction sector to increase the proportion of biobased building materials made from renewable resources. By-products or residuals from wood processing could in this case be valuable resources for manufacturing new types of biocomposites. An important research question related to wood-based biocomposites is how to characterise molecular interactions between the different components in the composite. The hygroscopic character of wood and its water sorption properties are also crucial. Thermal modification (or heat treatment) of wood results in a number of enhanced properties such as reduced hygroscopicity and improved dimensional stability as well as increased resistance to microbiological decay.

    In this thesis, surface characteristics of thermally modified wood components (often called wood fibres or particles) and influencing effects from moisture sorption have been analysed using a number of material characterisation techniques. The aim is to increase the understanding in how to design efficient material combinations for the use of such wood components in biocomposites. The specific objective was to study surface energy characteristics of thermally modified spruce (Picea abies Karst.) under influences of water vapour sorption. An effort was also made to establish a link between surface energy and surface chemical composition. The surface energy of both thermally modified and unmodified wood components were studied at different surface coverages using inverse gas chromatography (IGC), providing information about the heterogeneity of the surface energy. The water vapour sorption behaviour of the wood components was studied using the dynamic vapour sorption (DVS) method, and their surface chemical composition was studied by means of X-ray photoelectron spectroscopy (XPS). Additionally, the morphology of the wood components was studied with scanning electron microscopy (SEM).

    The IGC analysis indicated a more heterogeneous surface energy character of the thermally modified wood compared with the unmodified wood. An increase of the dispersive surface energy due to exposure to an increased relative humidity (RH) from 0% to 75% RH at 30 ˚C was also indicated for the modified samples. The DVS analysis indicated an increase in equilibrium moisture content (EMC) in adsorption due to the exposure to 75% RH. Furthermore, the XPS results indicated a decrease of extractable and a relative increase of non-extractable compounds due to the exposure, valid for both the modified and the unmodified wood. The property changes due to the increased RH condition and also due to the thermal modification are suggested to be related to alterations in the amount of accessible hydroxyl groups in the wood surface. Recommendations for future work and implications of the results could be related to knowledge-based tailoring of new compatible and durable material combinations, for example when using thermally modified wood components in new types of biocomposites for outdoor applications.

  • 8.
    Twumasi, Ebenezer
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Molecular filtration: the study of adsorbents2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Adsorbent materials for gas purification have been studied and developed for application in many areas. It is known that a single adsorbent may not adequately control multiple contaminants. Therefore, the development of adsorbent materials has accelerated over the past two decades, and is today an area attracting a lot of attention. In view of the global environmental movement for clean air, the development of improved sorbents will help address new challenges that cannot efficiently be met with the generic sorbents that are presently commercially available. On the other hand, the utilization of these new sorbents for specific applications within the area of molecular filtration remains largely unexplored. This thesis presents a synthesis of new sorbent materials, and the characterization and application of these materials for molecular filtration. Commercial adsorbents have been used for benchmarking for the pore properties, the applicability, and the performance of these new adsorbents. A double metal-silica adsorbent has been synthesized. The preparation procedure is based on the use of sodium silicate coagulated with various ratios of magnesium and calcium salts which yields micro-meso porous structures in the resulting material. The results show that molar ratios of Mg/Ca influence the pore parameters as well as the structure and morphology. The bimodal pore size can be tailored by controlling the Mg/Ca ratio. The effect of thermal treatment on pore parameters of these adsorbents has been investigated. The results show that heat treatment had a notable effect on the pore parameters, and that the pore structure was thermally stable even at 600°C.

     A synthesis method has also been developed for the preparation of carbon-silica composites. The method involves a number of routes, which can be summarised as addition of activated carbon particles to (I) the paste, (II) the salt solution, or (III) with the sodium silicate solution. In route II and III the activated carbon is present also before coagulation. The routes presented here leads to carbon-silica composites possessing high micro porosity, meso porosity as well as large surface areas. The increase in micro porosity and surface areas was linear with carbon content. The results shows further that pore size distribution may be tailored based on the route of addition of the carbon particles. Following route I and III a wide pore size (1-30nm) was obtained where as by route II a narrow pore size (1-4nm) was observed. KOH or KMnO4 modified MgCa adsorbent varieties were also prepared. The impregnationwas performed by either a direct synthesis or post-synthesis procedure. Potassium hydroxide and potassium permanganate have been chosen as impregnate chemicals. Results revealed that theimpregnate amount significantly affected both the structural and the gas adsorption characteristics of the impregnated MgCa adsorbents. The properties of double- metal adsorbents, impregnated adsorbents and carbon-silica composites were characterized by various methods (X-ray diffraction, scanning electron microscopy, thermo gravimetric analysis, and nitrogen adsorption at 77K) to study the material structure and morphology, thermal stability, ignition temperature and porous parameters with regard to surface area, pore size, pore size distribution and porosity volume, which is important for optimizing their use in many practical application. The up-take performance of adsorbents for dynamic adsorption of SO2, H2S and toluene was performed in a system similar to the setup usedin ASHRAE 145.1. Finally the applicability and performance of the impregnated modified MgCa-silica adsorbents and composites have been evaluated for H2S, SO2 and toluene adsorption and compared to some commercial adsorbent materials. Results revealed that a potassium permanganate modified MgCa-adsorbent has a H2S adsorption capacity in the range of 0.08-3.19 wt % at 50% efficiency, and that the uptake capacity was relative to the amount of potassiumpermanganate loading. Moreover, KOH modified MgCa-adsorbent shows highest SO2 adsorption capacity (1.7 wt %) which is 3.47 times higher than commercial alumina impregnate with potassium permanganate (0.49 wt %). Carbon-silica composites on the other hand shows adsorption of toluene and high adsorption capacity was obtained when carbon content was 45 wt %. The results further shows that a composite with 45 wt % carbon and obtained via route I present the highest toluene adsorption capacity ( 27.6 wt % relative to carbon content) at 0% efficiency. The large uptake capacity of this composite was attributed to the presence of high microporosity volume and a wide (1-30nm) bimodal pore system consisting of extensive mesopore channels (2-30nm) as well as large surface area. These capacity values of carbon-silica composites are competitive to results obtained for commercial coconut based carbon (31 wt %), and better than commercial alumina-carbon composite.

  • 9.
    Bryne, Lars-Elof
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Aspects on wettability and surface composition of modified wood2008Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Wood is often combined with other materials such as thermoplastics, adhesives and coatings. In general, combinations of wood and polymers especially in outdoor exposure have poor long-term durability. This behaviour can be related to an insufficient wood-polymer adhesion due to the low intrinsic compatibility between the wood substance and the polymers used. Another source for woodpolymer de-bonding is the high hygroscopicity of wood and great difference in hygro-thermal properties between the components.

    The basic conceptual idea related to this work is to reduce the hygrosensitivity of wood by applying different wood modification methods, in particular, acetylation, furfurylation and heat treatment. The effects of such chemical modifications of wood, also accompanied with ageing effects, on its adhesion properties with commonly used synthetic polymers are, however, not well understood. In this context, the over-all purpose of this thesis is to achieve a better understanding of wood-polymer adhesion and interfacial forces which also may guide us to tailor the interaction between modified wood and e.g. thermoplastics and adhesives. The main focus of this thesis is therefore to apply contact angle analysis based on the Chang-Qin-Chen (CQC) Lewis acid-base model in order to estimate the work of adhesion (Wa) between the wood, modified wood and certain polymers. Contact angle measurements on wood samples were performed based on the Wilhelm plate principle. Related to this, an effort was also made to characterize the studied modified wood surfaces according to morphology and chemical composition. The methods that have been used are low vacuum scanning electron microscopy (LV-SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS).

    Results show that so-called interaction parameters can be successfully estimated for prediction of Wa between wood and polymers using the applied CQC model. Furthermore, such wetting analysis was successfully related to spectroscopic findings of the chemical composition of the wood samples surface. Ageing effects, i.e. the time after preparation of the wood surface, play a central role for the surface characteristics. In most cases, ageing resulted in a significant decrease of Wa between wood and water and a moderate decrease between wood and thermoplastics. The surface characteristics of acetylated wood were, however, more stable over time compared to unmodified, furfurylated and heat treated wood. The predicted Wa with the adhesives for heat treated and acetylated wood was increased due to ageing. Future work is planned to involve studies in order to relate such predicted adhesion properties with the actual performance of various wood-polymer systems.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf