Change search
Refine search result
1234567 1 - 3 of 1865
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kargarrazi, Saleh
    et al.
    Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA..
    Elahipanah, Hossein
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Saggini, Stefano
    DIEGM Univ Udine, I-33100 Udine, Italy..
    Senesky, Debbie
    Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA..
    Zetterling, Carl-Mikael
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    500 degrees C SiC PWM Integrated Circuit2019In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 34, no 3, p. 1997-2001Article in journal (Refereed)
    Abstract [en]

    This letter reports on a high-temperature pulsewidth modulation (PWM) integrated circuit microfabricated in 4H-SiC bipolar process technology that features an on-chip integrated ramp generator. The circuit has been characterized and shown to be operational in a wide temperature range from 25 to 500 degrees C. The operating frequency of the PWM varies in the range of 160 to 210 kHz and the duty cycle varies less than 17% over the entire temperature range. The proposed PWM is suggested to efficiently and reliably control power converters in extreme environments.

  • 2.
    Shakir, Muhammad
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Metreveli, Alexy
    Ur Rashid, Arman
    Mantooth, Alan
    Zetterling, Carl-Mikael
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    555-Timer IC Operational at 500 °C2019In: Bipolar SiC 555-timer IC, High Temperature ICs, TTL Comparator, SiC Integrated CircuitsArticle in journal (Other academic)
    Abstract [en]

    This paper reports an industry standard monolithic 555-timer circuit designed and fabricated in the in-house silicon carbide (SiC) low-voltage bipolar technology. The paper demonstrates the 555-timer ICs characterization in both astable and monostable modes of operation, with a supply voltage of 15 V over the wide temperature range of 25 to 500°C. Nonmonotonictemperature dependence was observed for the 555-timer IC frequency, rise-time, fall-time, and power dissipation.

  • 3.
    Li, Yuchao
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Feng, Lei
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Wang, Yu
    KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control. KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    A cascade control approach to active suspension using pneumatic actuators2019In: Asian journal of control, ISSN 1561-8625, E-ISSN 1561-8625, p. 1-19Article in journal (Refereed)
    Abstract [en]

    Operators of forest machinery suffer from intensive whole body vibrations, which are big threats to their health. Therefore, it is important to investigate effective seat undercarriages and control methods for vibration reduction. This paper addresses the control problem of a novel seat undercarriage with pneu-matic actuators customized for forest machinery. A two-layer cascade controlstructure is developed, where the top layer consists of a group of proportional controllers to regulate the position of pneumatic actuators and the bottom layeris a sliding mode controller for force and stiffness tracking. The advantage ofthe sliding mode control is to achieve robust control performance with coarse system models. The paper demonstrates that the proposed control structure is better than a traditional PID controller. The robust stability of the sliding mode controller is proved by the Lyapunov's method. Experiments show its capability of reducing at least 20% amplitude of seat vibrations from 0.5 to 1 Hz.

1234567 1 - 3 of 1865
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf