Change search
Refine search result
12345 101 - 150 of 233
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. RISE Bioecon, Drottning Kristinas Väg 61, S-11486 Stockholm, Sweden..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    One-pot preparation of bi-functional cellulose nanofibrils2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 12, p. 7031-7042Article in journal (Refereed)
    Abstract [en]

    Herein, we present a route to obtain bi-functional cellulose nanofibrils (CNF) by a one-pot approach using an already established functionalisation route, carboxymethylation, to which a subsequent functionalisation step, allylation or alkynation, has been added in the same reaction pot, eliminating the need of solvent exchange procedures. The total charge of the fibres and the total surface charge of the nanofibrils were determined by conductometric and polyelectrolyte titration, respectively. Furthermore, the allyl and alkyne functionalised cellulose were reacted with methyl 3-mercaptopropionate and azide-functionalised disperse red, respectively, to estimate the degree of functionalisation. The samples were further assessed by XPS and FT-IR. Physical characteristics were evaluated by CP/MAS C-13-NMR, XRD, AFM and DLS. This new approach of obtaining bi-functionalised CNF allows for a facile and rapid functionalisation of CNF where chemical handles can easily be attached and used for further modification of the fibrils.

  • 102.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Leggieri, Maria Rosella Telaretti
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sanchez, Carmen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 5, p. 1937-1943Article in journal (Refereed)
    Abstract [en]

    An all-water-based procedure for "controlled" polymer grafting from cellulose nanofibrils is reported. Polymers and copolymers of poly(ethylene glycol) methyl ether methacrylate (POEGMA) and poly(methyl methacrylate) (PMMA) were synthesized by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) from the cellulose nanofibril (CNF) surface in water. A macroinitiator was electrostatically immobilized to the CNF surface, and its amphiphilic nature enabled polymerizations of both hydrophobic and hydrophilic monomers in water. The electrostatic interactions between the macroinitiator and the CNF surface were studied by quartz crystal microbalance with dissipation energy (QCM-D) and showed the formation of a rigid adsorbed layer, which did not desorb upon washing, corroborating the anticipated electrostatic interactions. Polymerizations were conducted from dispersed modified CNFs as well as from preformed modified CNF aerogels soaked in water. The polymerizations yielded matrix-free composite materials with a CNF content of approximately 1-2 and 3-6 wt % for dispersion-initiated and aerogel-initiated CNFs, respectively.

  • 103.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Controlling the dispersion properties of nanocellulose systems by surface modification2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 104.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical propertiesManuscript (preprint) (Other academic)
  • 105.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical properties2019In: Article in journal (Other academic)
  • 106.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    Chalmers University of Technology.
    Molecular engineering of cellulose-PCL bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles2019In: Article in journal (Refereed)
  • 107.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles2019In: ACS NANO, Vol. 13, no 6, p. 6409-6420Article in journal (Refereed)
    Abstract [en]

    A molecularly engineered water-borne reactive compatibilizer is designed for tuning of the interface in melt-processed thermoplastic poly(caprolactone) (PCL)-cellulose nanocomposites. The mechanical properties of the nanocomposites are studied by tensile testing and dynamic mechanical analysis. The reactive compatibilizer is a statistical copolymer of 2-(dimethylamino)ethyl methacrylate and 2-hydroxy methacrylate, which is subsequently esterified and quaternized. Quaternized ammonium groups in the reactive compatibilizer electrostatically match the negative surface charge of cellulose nanofibrils (CNFs). This results in core-shell CNFs with a thin uniform coating of the compatibilizer. This promotes the dispersion of CNFs in the PCL matrix, as concluded from high-resolution scanning electron microscopy and atomic force microscopy. Moreover, the compatibilizer "shell" has methacrylate functionalities, which allow for radical reactions during processing and links covalently with PCL. Compared to the bio-nanocomposite reference, the reactive compatibilizer (<4 wt %) increased Young's modulus by about 80% and work to fracture 10 times. Doubling the amount of peroxide caused further improved mechanical properties, in support of effects from higher cross-link density at the interface. Further studies of interfacial design in specific nanocellulose-based composite materials are warranted since the detrimental effects from CNFs agglomeration may have been underestimated.

  • 108.
    Karim, Zoheb
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    De-Castro, Daniele Oliveira
    KTH.
    Svedberg, A.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Wågberg, Lars
    KTH.
    Berglund, Lars
    KTH.
    Forming a cellulose based nanopaper using XPM2017In: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, p. 399-407Conference paper (Refereed)
  • 109.
    Karlsson, Rose-Marie Pernilla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. RISE Bioecon, Box 5604, S-11486 Stockholm, Sweden.
    Yu, Shun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Pendergraph, Samuel Allen
    RISE Bioecon, Box 5604, S-11486 Stockholm, Sweden..
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hellwig, Johannes
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers2018In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 519, p. 119-129Article in journal (Refereed)
    Abstract [en]

    Macroscopic beads of water-based gels consisting of uncharged and partially charged beta-(1,4)-D-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling.

  • 110.
    Kassab, Zineb
    et al.
    Mohammed VI Polytech Univ UM6P, Mat Sci & Nanoengn Dept MSN, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco.;Univ Hassan II Casablanca, Fac Sci Ben Msik, Lab Ingn & Mat LIMAT, BP 7955, Casablanca, Morocco..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ben Youcef, Hicham
    Mohammed VI Polytech Univ UM6P, Mat Sci & Nanoengn Dept MSN, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco..
    Hajlane, Abdelghani
    Mohammed VI Polytech Univ UM6P, Mat Sci & Nanoengn Dept MSN, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco..
    Hannache, Hassan
    Mohammed VI Polytech Univ UM6P, Mat Sci & Nanoengn Dept MSN, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco.;Univ Hassan II Casablanca, Fac Sci Ben Msik, Lab Ingn & Mat LIMAT, BP 7955, Casablanca, Morocco..
    El Achaby, Mounir
    Mohammed VI Polytech Univ UM6P, Mat Sci & Nanoengn Dept MSN, Lot 660 Hay Moulay Rachid, Benguerir 43150, Morocco..
    Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 18, p. 9567-9581Article in journal (Refereed)
    Abstract [en]

    Alfa fibers (Stipa Tenacissima) were effectively utilized in this study as a promising cellulose source for isolation of carboxy-functionalized cellulose nanofibrils (CNFs) using multiple treatments. Pure cellulose microfibers (CMFs) were firstly extracted by alkali and bleaching treatments. CNFs with an average nanofibrils diameter ranging from 1.4 to 4.6 nm and a crystallinity of 89% were isolated from CMFs by a combination of TEMPO-oxidation and mechanical disintegration processes. The morphology and physico-chemical properties of cellulosic materials were evaluated at different stages of treatments using several characterization techniques. Various CNF loadings (5-15 wt%) were incorporated into PVA polymer to evaluate the nanoreinforcement ability of CNFs and to produce CNF-filled PVA nanocomposite materials. The tensile and optical transmittance properties, as well as the morphological and thermal properties of the as-produced CNF-filled PVA nanocomposite films were investigated. It was found that the tensile modulus and strength of nanocomposites were gradually increased with increasing of CNF loadings, with a maximum increase of 90% and 74% was observed for a PVA nanocomposite containing 15 wt% CNFs, respectively. The optical transmittance was reduced from 91% (at 650 nm) for neat PVA polymer to 88%, 82% and 76% for PVA nanocomposites containing 5, 10 and 15 wt% CNFs, respectively. It was also found that the glass transition temperature was gradually increased from 76 degrees C for neat PVA to 89 degrees C for PVA nanocomposite containing 15 wt%. This study demonstrates the importance of Alfa fibers as annual renewable lignocellulosic material to produce CNFs with good morphology and excellent properties. These newly developed carboxy-functionalized CNFs could be considered as a potential nanofiller candidate for the preparation of nanocomposite materials of high transparency and good mechanical properties.Graphic abstract

  • 111.
    Kim, Hyeyun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Wood-Based Nanocellulose In Lithium Ion Batteries and Electrochemical Coatings2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Lithium ion batteries contain diverse functional polymeric materials, e.g. binders and separators. Naturally self-assembled wood cellulose can be disintegrated to nanosized particles with a diversity of morphology by top-down processes, adjusting the manufacturing parameters. The nanomaterials can then be reconstructed by bottom-up assembly to structures similar to that of the polymeric materials in lithium ion batteries, capable of replacing their functions and ensuring similar or improved performance.

    The aim of the thesis is to evaluate the feasibility of wood-based cellulose nanofibers in lithium ion batteries and explore other possible applications. The relationship between the characteristics of nanocellulose, treated by different processes, and their performance as battery components were investigated using electrochemical and in-operando measurements. Development of electrode-integrated cellulose separators was enabled by a non-aqueous drying method. This significantly improved the drying efficiency and can be considered an eco-friendly process without using hazardous chemicals. This study sheds the light on cellulose as a promising separator material, satisfying the industrial needs without trade-off of durability of the material and ion transport properties.Other than lithium ion battery applications, cellulose nanofibrils are introduced as a pH-responsive polymer and a precursor of hydrogel, electrochemically coated on any conductive substrate. Not only hydrogel, this electro-precipitation method also enables to fabricate single or multi-layered composites. The hydrogel and the composites fabricated by this technique can work as functional materials in the diverse electrochemical applications.

    In summary, the results indicate that using wood-based cellulose as a raw material is beneficial to fabricate the functional materials by eco-friendly manufacturing processes, available for a variety of electrochemical applications, showing excellent performance.

    Download full text (pdf)
    fulltext
  • 112.
    Kim, Hyeyun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Endrodi, Balazs
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Salazar-Alvarez, German
    Cornell, Ann M.
    KTH, Superseded Departments (pre-2005), Chemical Engineering and Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    One-step electro-precipitation of nanocellulose hydrogels on conducting substrates and its possible applications: coatings, composites, and energy devices2019In: ACS Sustainable Chemistry & Engineering, Vol. 7, no 24, p. 19415-19425Article in journal (Refereed)
    Abstract [en]

    TEMPO-oxidized cellulose nanofibrils (TOCN) are pH-responsive biopolymers which undergo sol–gel transition at acidic conditions (pH < 4) due to charge neutralization. Electronically conducting materials can be coated by such gels during aqueous electrolysis, when an electrochemical reaction generates a local pH decrease at the electrode surface. In this work, electro-precipitation of different TOCN gels has been performed on oxygen evolving anodes. We demonstrate that TOCN hydrogels can be electrochemically coated on the surface of any conductive material with even complex 3D shape. Further, not only TOCN but also micro- or nanosized particles containing TOCN composites can be coated on the electrode surface, and coatings containing multiple layers of different composites can be also produced. We demonstrate that this simple and facile electrocoating technique can be subject to various applications, such as coatings making electrodes selective for the hydrogen evolution reaction, as well as a new eco-friendly aqueous-based synthesis of Li-ion battery electrodes.

    Download full text (pdf)
    fulltext
  • 113.
    Kim, Hyeyun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Guccini, Valentina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Lu, Huiran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. Northvolt AB, Gamla Brogatan 26, SE-11120 Stockholm, Sweden.
    Salazar-Alvarez, German
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden..
    Lindbergh, Göran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cornell, Ann M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lithium Ion Battery Separators Based On Carboxylated Cellulose Nanofibers From Wood2019In: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, p. 1241-1250Article in journal (Refereed)
    Abstract [en]

    Carboxylated cellulose nanofibers, prepared by TEMPO-mediated oxidation (TOCN), were processed into asymmetric mesoporous membranes using a facile paper-making approach and investigated as lithium ion battery separators. Membranes made of TOCN with sodium carboxylate groups (TOCN-COO-Na+) showed capacity fading after a few cycles of charging and discharging. On the other hand, its protonated counterpart (TOCN-COOH) showed highly improved electrochemical and cycling stability, displaying 94.5% of discharge capacity maintained after 100 cycles at 1 C rate of charging and discharging. The asymmetric surface porosity of the membranes must be considered when assembling a battery cell as it influences the rate capabilities of the battery. The wood-based TOCN-membranes have a good potential as an ecofriendly alternative to conventional fossil fuel-derived separators without adverse side effects.

    Download full text (pdf)
    fulltext
  • 114.
    Kim, Hyeyun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Mattinen, Ulriika
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. Åbo Akademi.
    Guccini, Valentina
    Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University.
    Salazar-Alvarez, German
    Lindström, Rakel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Lindbergh, Göran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Cornell, Ann M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Feasibility of chemically modified cellulose nanofiber membrane as lithium ion battery separatorManuscript (preprint) (Other academic)
    Abstract [en]

    Chemical modification of cellulose contributes to its fibrillation to nanofibers and consequently production of a mesoporous membrane, desirable for lithium ion battery separator. Nevertheless, the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibers (TOCN) based separator with high charge density (650 μmol COO-/gCNF) has high risk of cell failure in lithium ion battery (LIB), compared to the counterpart with lower charge density (350 μmol/g). In this study, the influence of sodium carboxylate or carboxylic acid functional groups in TOCN as lithium ion battery separator was investigated. In-operando mass spectrometry measurements were used to elucidate the cause of cell failure by analyzing the gas evolved, from batteries containing different types of separators. For the TOCN separator with sodium carboxylate functional groups, it seems that Na deposition is the dominant reason for poor electrochemical stability of the cell thereof. The poor performance of the protonated TOCN separator is attributed to a high amount of gas evolution, mostly H2, originating from the reduction of trace water and H+ released from COOH and OH surface groups. Nonetheless, the electrochemical performance of the separator could be dramatically improved by adding 2 wt% of vinylene carbonate (VC) to the electrolyte, which effectively suppressed the generation of gas. Furthermore, the separator demonstrated excellent cycling stability in the pouch cell and sufficiently high specific capacity at ≈ 2C of discharging rate.

  • 115.
    Kim, Hyeyun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Moser, Carl
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Mattinen, Ulriika
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. Åbo Akademi.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lindström, Rakel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Lindbergh, Göran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Cornell, Ann M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Spray-coated nanocellulose based separator/electrode assemblyManuscript (preprint) (Other academic)
    Abstract [en]

    A separator-electrode assembly (SEA) made of wood-based cellulose nanofibers (CNF) and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was fabricated by a facile spray-coating process. CNF building blocks were prepared by homogenizing enzymatically pretreated cellulose fibers dispersed in a non-hazardous solvent, 2-propanol (IPA). The porous composite separator was made by spray-coating thin layers CNF-IPA, followed by a PVDF-HFP spray coating, on a lithium ion battery electrode. A CNF substrate was crucial for making a highly porous and thermally stable separator and PVDF-HFP coating enhanced its mechanical stability. The SEA maintained dimensional integrity when subjected to high temperature and when used in lithium ion batteries. A CNF-LiNi1/3Co1/3Mn1/3O2 (NMC) SEA showed excellent electrochemical stability, especially at fast charging/discharging rate, whereas a graphite counterpart showed poor electrochemical performance, resulting in cell failure. A SiO2 layer overcoated on the top of CNF-NMC SEA enabled its application for a proof-of-concept lithium metal battery and for a high energy‐density LiNi0.6Co0.2Mn0.2O2 (NMC622) lithium‐ion battery with excellent electrochemical stability and performances. The utilization of biodegradable materials and non-hazardous solvents such as IPA and acetone makes the development of the CNF based SEA attractive, as an eco-friendly lithium ion battery manufacturing process.

  • 116.
    Kishani, Saina
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Solubility and adsorption of different xyloglucan fractions to model surfaces2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 117.
    Kivijärvi, Tove
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Pappalardo, Daniela
    Univ Sannio, Dept Sci & Technol, Via Mulini, I-82100 Benevento, Italy..
    Olsen, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Finne Wistrand, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Inclusion of isolated alpha-amino acids along the polylactide chain through organocatalytic ring-opening copolymerization2020In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 131, article id UNSP 109703Article in journal (Refereed)
    Abstract [en]

    Degradable polymers based on alpha-hydroxy acids and alpha-amino acids constitutes a potent class of biomaterials, combining high hydrolyzability with structural features that mimics peptides. Driven by the design criteria to construct isolated a-amino acid units along a main polylactide chain, a copolymer system was developed based on two monomers with distinctly different equilibrium behaviors. This was uncovered by detailed understanding on the kinetic and thermodynamic polymerizability of 3S,6S-dimethylmorpholine-2,5-dione (DMMD) and L-lactide (LLA) at low reaction temperatures. Under Bronsted base-promoted ring-opening copolymerization (ROCOP) conditions, the equilibrium nature of the copolymerization was shown susceptible to changes in the system, such as catalyst basicity, solvent polarity and initial monomer concentrations. Subsequently, high equilibrium conversions of both monomers with control over molecular weight and dispersity could be achieved within short reaction times by modulation of these factors. Thermodynamic elucidations of the copolymerization system revealed that DMMD behaved as an unstrained monomer with a large propagation barrier, favored by an increase in polymerization temperature. Ultimately, the high propagation barrier of DMMD in the system resulted in a kinetically controlled mechanism with the formation of completely isolated units of DMMD along the polylactide backbone. These results extend current ROCOP strategies of morpholine-2,5-diones and cyclic esters to a mild and selective copolymerization platform for the construction of sequence-controlled a-amino acid decorated polyesters for medical applications.

  • 118.
    Koivurova, Matias
    et al.
    Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland..
    Vasileva, Elena
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Complete spatial coherence characterization of quasi-random laser emission from dye doped transparent wood2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13474-13482Article in journal (Refereed)
    Abstract [en]

    We report on the experimental determination of the complete two coordinate spatial coherence function of light emitted by a quasi-random laser, implemented on recently introduced dye-doped transparent wood. The spatial coherence was measured by means of a double grating interferometer, which has some advantages over the standard Young's interferometer. Analysis of the spatial coherence reveals that emission from such a material can be considered as a superposition of several spatial modes produced by individual emitters within semi-ordered scattering medium. The overall degree of coherence, (gamma)over-bar, for this quasi-random laser was found to be 0.16 +/- 0.01, having possible applications in speckle free laser imaging and illumination.

    Download full text (pdf)
    oe-26-10-13474.pdf
  • 119.
    Koskela, Salla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wang, Shennan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Xu, Dingfeng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Kai
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    McKee, Lauren S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres2019In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, no 21, p. 5924-5933Article in journal (Refereed)
    Abstract [en]

    The production of cellulose nanofibres (CNFs) typically requires harsh chemistry and strong mechanical fibrillation, both of which have negative environmental impacts. A possible solution is offered by lytic polysaccharide monooxygenases (LPMOs), oxidative enzymes that boost cellulose fibrillation. Although the role of LPMOs in oxidative modification of cellulosic substrates is rather well established, their use in the production of cellulose nanomaterials is not fully explored, and the effect of the carbohydrate-binding module (CBM) on nanofibrillation has not yet been reported. Herein, we studied the activity of two LPMOs, one of which was appended to a CBM, on delignified softwood fibres for green and energy-efficient production of CNFs. The CNFs were used to prepare cellulose nanopapers, and the structure and properties of both nanofibres and nanopapers were determined. Both enzymes were able to facilitate nanocellulose fibrillation and increase colloidal stability of the produced CNFs. However, the CBM-lacking LPMO was more efficient in introducing carboxyl groups (0.53 mmol/g) on the cellulose fibre surfaces and releasing CNFs with thinner width (4.3 ± 1.5 nm) from delignified spruce fibres than the modular LPMO (carboxylate content of 0.38 mmol/g and nanofibre width of 6.7± 2.5 nm through LPMO pretreatment followed by mild homogenisation. The prepared nanopapers showed improved mechanical properties (tensile strength of 262 MPa, and modulus of 16.2 GPa) compared to conventional CNFs preparation methods, demonstrating the potential of LPMOs as green alternatives for cellulose nanomaterials preparation.

  • 120.
    Kupka, Vojtech
    et al.
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic..
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tang, Hu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). Royal Inst Technol KTH, AlbaNova Univ Ctr, Sch Biotechnol, S-10691 Stockholm, Sweden..
    Slouf, Miroslav
    Acad Sci Czech Republ, Inst Macromol Chem, CR-16206 Prague, Czech Republic..
    Vojtova, Lucy
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Jancar, Josef
    Brno Univ Technol, CEITEC Cent European Inst Technol, Brno 61200, Czech Republic.;SCITEG As, U Vodarny 2965-2, Brno 61600, Czech Republic..
    Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk2019In: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569, Vol. 40, p. E456-E465Article in journal (Refereed)
    Abstract [en]

    Polyurethane (PU) nanocomposites utilizing cellulose nanocrystals (CNCs) as nanofiller and amorphous PU matrix were synthesized in a novel solvent-free bulk process. A green nanofiller, CNCs, was studied as reinforcement and was further modified by grafting poly(ethylene glycol) (PEG) on the CNC surface (CNC-PEG). Transmission electron microscopy revealed an excellent dispersion of the PEGylated CNC nanoparticles in the PU matrix, whereas as-received CNCs formed agglomerates. The results indicated strong improvements in tensile properties with Young's modulus increasing up to 50% and strength up to 25% for both, PU/CNC and PU/CNC-PEG nanocomposites. The enhanced tensile modulus was attributed to stiff particle reinforcement together with an increase in glass transition temperature.

  • 121.
    Kvist, Patric
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers University of Technology, Gothenburg, 412 96, Sweden.
    Gebäck, T.
    Muzamal, M.
    Rasmuson, Anders
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers University of Technology, Gothenburg, 412 96, Sweden.
    Lattice Boltzmann simulations of diffusion in steam-exploded wood2019In: Wood Science and Technology, ISSN 0043-7719, E-ISSN 1432-5225, Vol. 53, no 4, p. 855-871Article in journal (Refereed)
    Abstract [en]

    Diffusion of large molecules throughout the porous microstructure of wood pretreated with steam explosion was investigated by using the lattice Boltzmann method for simulations. Wood samples were investigated with high-resolution X-ray tomography to effectively reconstruct an accurate geometry of the structural changes that ensue after pretreatment. Samples of approximately 1 mm3 with voxel sizes from 0.5 to 1 μm were examined with X-ray imaging. These large volumes, relative to what reasonably can be simulated, were divided into sub-volumes and were further reconstructed into geometries suited for the LBM simulations. The transient development of the concentration was investigated, and the effective diffusion coefficient at steady state was computed. Diffusion rates were found to increase significantly in the transversal direction due to the steam explosion pretreatment. The increase was observed both in the time needed for solutes to diffuse throughout the pores and in the effective diffusion coefficient. A shorter diffusion pathway and a higher connectivity between pores were found for the pretreated samples, even though the porosity was similar and the pore size distribution narrower than the native sample. These results show that local mass transport depends not only on porosity but also, in a complex manner, on pore structure. Thus, a more detailed analysis of pore space structure using tomography data, in combination with simulations, enables a more general understanding of the diffusional process.

  • 122.
    Kvist, Patric
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol,;Chalmers Univ Technol, SuMo Biomat, Gothenburg, Sweden..
    Schuster, Erich
    RISE Agrifood & Biosci, Prod Design & Percept, Box 5401, S-40229 Gothenburg, Sweden.;Chalmers Univ Technol, SuMo Biomat, Gothenburg, Sweden..
    Loren, Niklas
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden.;RISE Agrifood & Biosci, Prod Design & Percept, Box 5401, S-40229 Gothenburg, Sweden.;Chalmers Univ Technol, SuMo Biomat, Gothenburg, Sweden..
    Rasmuson, Anders
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, .
    Using fluorescent probes and FRAP to investigate macromolecule diffusion in steam-exploded wood2018In: Wood Science and Technology, ISSN 0043-7719, E-ISSN 1432-5225, Vol. 52, no 5, p. 1395-1410Article in journal (Refereed)
    Abstract [en]

    Diffusion of fluorescently labeled dextran of varying molecular weight in wood pretreated by steam explosion was studied with a confocal microscope. The steam explosion experiments were conducted at relatively mild conditions relevant for materials biorefinery at a pressure of 14 bars for 10 min. The method of fluorescence recovery after photobleaching (FRAP) was used to perform diffusion measurements locally in the wood microstructure. It was found that the FRAP methodology can be used to observe differences in the diffusion coefficient based on localization in the microstructure, i.e., earlywood, latewood, and cell wall. Microscopic changes due to steam explosion were seen to increase diffusion of the smaller 3-kDa dextran diffusion probe in the earlywood, while the latewood structure was not affected in any significant way. Macroscopic changes to the structure in the form of ruptures due to the steam explosion pretreatment were observed to increase the rate of diffusion for the larger 40-kDa dextran probe.

  • 123.
    Köklükaya, Oruç
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Carosio, F.
    López Durán, Veronica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Layer-by-layer modified low density cellulose fiber networks: A sustainable and fireproof alternative to petroleum based foams2020In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 230, article id 115616Article in journal (Refereed)
    Abstract [en]

    Wood-based cellulose fibers were used to prepare porous, low density and wet-stable fiber networks (FN). Multilayer coatings consisting of chitosan (CH), sodium hexametaphosphate (SHMP) and inorganic nanoparticles comprising of either sodium montmorillonite (MMT), sepiolite (SEP) or colloidal silica (SNP) were deposited by the layer-by-layer (LbL) technique onto FNs in an effort to impart flame-retardancy. A simulated fire scenario measured by cone calorimetry showed that five quadlayers (QL) of CH/SHMP/CH/MMT, CH/SHMP/CH/SEP and CH/SHMP/CH/SNP can produce significant reduction in peak heat release rate (pkHRR). In detail, the coating containing SEP showed the largest reduction of the pkHRR by 47% relative to the uncoated FN. MMT and SEP coated FNs were also able to self-extinguish fire and to retain their shapes after direct exposure to a methane flame. This study hence shows that the LbL assembly is a highly effective way to impart flame-retardant properties to this new type of porous FN.

  • 124.
    Larsbrink, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    McKee, L. S.
    Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility2019In: Advances in Applied Microbiology, ISSN 0065-2164Article in journal (Refereed)
    Abstract [en]

    The secretion of extracellular enzymes by soil microbes is rate-limiting in the recycling of biomass. Fungi and bacteria compete and collaborate for nutrients in the soil, with wide ranging ecological impacts. Within soil microbiota, the Bacteroidetes tend to be a dominant phylum, just like in human and animal intestines. The Bacteroidetes thrive because of their ability to secrete diverse arrays of carbohydrate-active enzymes (CAZymes) that target the highly varied glycans in the soil. Bacteroidetes use an energy-saving system of genomic organization, whereby most of their CAZymes are grouped into Polysaccharide Utilization Loci (PULs). These loci enable high level production of specific CAZymes only when their substrate glycans are abundant in the local environment. This gives the Bacteroidetes a clear advantage over other species in the competitive soil environment, further enhanced by the phylum-specific Type IX Secretion System (T9SS). The T9SS is highly effective at secreting CAZymes and/or tethering them to the cell surface, and is tightly coupled to the ability to rapidly glide over solid surfaces, a connection that promotes an active hunt for nutrition. Although the soil Bacteroidetes are less well studied than human gut symbionts, research is uncovering important biochemical and physiological phenomena. In this review, we summarize the state of the art on research into the CAZymes secreted by soil Bacteroidetes in the contexts of microbial soil ecology and the discovery of novel CAZymes for use in industrial biotechnology. We hope that this review will stimulate further investigations into the somewhat neglected enzymology of non-gut Bacteroidetes.

  • 125.
    Larsson, Per Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. Innventia AB, Stockholm, Sweden..
    Karlsson, Pernilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Swelling behavior of cellulose rich materials in water2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 126.
    Li, Jing
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Wang, Damao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Xing, Xiaohui
    Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
    Cheng, Ting-Jen Rachel
    Genomics Research Centre, Academia Sinica, Sec. 2, 128 Academia Road, Nankang, Taipei 115, Taiwan.
    Liang, Pi-Hui
    School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
    Park, Jeong Hill
    College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
    Hsieh, Yves S. Y.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc2019In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 135, p. 29-37Article in journal (Refereed)
    Abstract [en]

    Ginseng marc is a major by-product of the ginseng industry currently used as animal feed or fertilizer. This fibrous, insoluble waste stream is rich in cell wall polysaccharides and therefore a potential source of ingredients for functional food with health-promoting properties. However, the extraction of these polysaccharides has proved problematic and their exact composition remains unknown. Here we have analysed the composition, structure and biological activity of polysaccharides from ginseng root, stem and leaf marc fractionated using a chelator and alkali solutions. The pectic fraction has been extracted from root marc in high abundance and can activate the production of interleukine-1α and the hematopoietic growth factor by RAW 264.7 murine macrophage cells, which are important immune regulators of T-cells during inflammatory responses and infection processes. Our study reveals the potential to increase the value of ginseng marc by generating carbohydrate-based products with a higher value than animal feed.

  • 127.
    Li, Qi
    et al.
    Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Hubei, Peoples R China..
    Chen, Pan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Yan
    Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Hubei, Peoples R China..
    Li, Bin
    Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Hubei, Peoples R China..
    Liu, Shilin
    Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Hubei, Peoples R China..
    Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: A bioinspired oxygen protection strategy2020In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 229, article id 115395Article in journal (Refereed)
    Abstract [en]

    Oxygen protection/isolation is imperative to prevent the lipid oxidation since oxygen molecule is an ultimate quencher in photon conversion process. Inspired by the structural buildup of seeds from oil crops, a sustainable solid particle stabilizer with novel antioxidant activity was prepared by using cellulose and polyphenol. In this work, bacterial cellulose (BC) nanofibrils modified by tea polyphenols (TPs) was prepared and used as Pickering emulsifier for the O/W emulsion. BC nanofibirls exhibited excellent adsorption capacity up to 55 mu g/mg, and the adsorption kinetics between BC and TPs were further investigated. After modification, the interfacial diffusion rate constant of BC was significantly increased to from 0.43 to 1.21 mN m(-1) s(-0.5). Moreover, the obtained O/W interfacial modulus of the dilatational elasticity was increased from 58 to 130 mN/m. Furthermore, the emulsions exhibited excellent free-radical scavenging activity at oil-water interface, suggesting a potential application in usage to extend the lifespan of the food containing polyunsaturated fats.

  • 128. Li, T.
    et al.
    Song, J.
    Zhao, X.
    Yang, Z.
    Pastel, G.
    Xu, S.
    Jia, C.
    Dai, J.
    Dai, C.
    Gong, A.
    Jiang, F.
    Yao, Y.
    Fan, T.
    Yang, B.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yang, R.
    Hu, L.
    Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose2018In: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 4, no 3, article id eaar3724Article in journal (Refereed)
    Abstract [en]

    There has been a growing interest in thermal management materials due to the prevailing energy challenges and unfulfilled needs for thermal insulation applications. We demonstrate the exceptional thermal management capabilities of a large-scale, hierarchal alignment of cellulose nanofibrils directly fabricated fromwood, hereafter referred to as nanowood. Nanowood exhibits anisotropic thermal properties with an extremely low thermal conductivity of 0.03W/m·K in the transverse direction (perpendicular to the nanofibrils) and approximately two times higher thermal conductivity of 0.06W/m·K in the axial direction due to the hierarchically aligned nanofibrilswithin the highly porous backbone. The anisotropy of the thermal conductivity enables efficient thermal dissipation along the axial direction, thereby preventing local overheating on the illuminated side while yielding improved thermal insulation along the backside that cannot be obtained with isotropic thermal insulators. The nanowood also shows a low emissivity of <5% over the solar spectrum with the ability to effectively reflect solar thermal energy. Moreover, the nanowood is lightweight yet strong, owing to the effective bonding between the aligned cellulose nanofibrils with a high compressive strength of 13 MPa in the axial direction and 20MPa in the transverse direction at 75% strain, which exceeds other thermal insulation materials, such as silica and polymer aerogels, Styrofoam, and wool. The excellent thermal management, abundance, biodegradability, high mechanical strength, low mass density, and manufacturing scalability of the nanowood make this material highly attractive for practical thermal insulation applications. 

  • 129.
    Li, Yuanyuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cheng, Ming
    Jungstedt, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Xu, Bo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Optically Transparent Wood Substrate for Perovskite Solar Cells2019In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 7, no 6, p. 6061-6067Article in journal (Refereed)
    Abstract [en]

    Transparent wood is a candidate for use as an energy-saving building material due to its low density (ca. 1.2 g/cm(3)), high optical transmittance (over 85% at 1 mm thickness), low thermal conductivity (0.23 W m(-1) K-1), and good load-bearing performance with tough failure behavior (no shattering). High optical transmittance also makes transparent wood a candidate for optoelectronic devices. In this work, for the first time, perovskite solar cells processed at low temperature (<150 degrees C) were successfully assembled directly on transparent wood substrates. A power conversion efficiency up to 16.8% was obtained. The technologies demonstrated may pave the way for integration of solar cells with light transmitting wood building structures for energy-saving purposes.

    Download full text (pdf)
    fulltext
  • 130.
    Li, Yuanyuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vasileva, Elena
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Optically Transparent Wood: Recent Progress, Opportunities, and Challenges2018In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 6, no 14, article id 1800059Article, review/survey (Refereed)
    Abstract [en]

    Transparent wood is an emerging load-bearing material reinvented from natural wood scaffolds with added light management functionalities. Such material shows promising properties for buildings and related structural applications, including its renewable and abundant origin, interesting optical properties, outstanding mechanical performance, low density, low thermal conductivity, and great potential for multifunctionalization. In this study, a detailed summary of recent progress on the transparent wood research topic is presented. Remaining questions and challenges related to transparent wood preparation, optical property measurements, and transparent wood modification and applications are discussed.

    Download full text (pdf)
    fulltext
  • 131.
    Li, Yuanyuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fu, Qiliang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Rojas, Ramiro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yan, Max
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Towards centimeter thick transparent wood through interface manipulation2018In: International Journal of Materials and Chemistry, ISSN 2166-5346, E-ISSN 2166-5354, Vol. 6, p. 1094-1101Article in journal (Refereed)
    Abstract [en]

    Transparent wood is an attractive structural material for energy-saving buildings due to its high optical transmittance, good thermal insulation, and high toughness. However, thick highly transparent wood is challenging to realize. In the current work, highly transparent wood (1.5 mm) with a transmittance of 92%, close to that of pure PMMA (95%), is demonstrated. The high transmittance was realized by interface manipulation through acetylation of wood template. Both experiments and electromagnetic modeling support that the improved transmittance is mainly due to elimination of interface debonding gap. By applying this method, a centimeter-thick transparent wood structure was obtained. The transparent wood could be used as a substrate for an optically tunable window by laminating a polymer dispersed liquid crystal (PDLC) film on top. The techniques demonstrated are a step towards the replacement of glass in smart windows and smart buildings.

    Download full text (pdf)
    fulltext
  • 132.
    Limaye, Mukta, V
    et al.
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden.;Royal Inst Thchnol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden.;Indian Inst Sci Educ & Res, Dept Phys, Berhampur 760010, Odisha, India..
    Schutz, Christina
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden.;Royal Inst Thchnol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden..
    Kriechbaum, Konstantin
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden..
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Bacsik, Zoltan
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden..
    Wohlert, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Xia, Wei
    Angstrom Lab, Dept Engn Sci Appl Mat Sci, SE-75121 Uppsala, Sweden..
    Plea, Mama
    Univ Sci Tech & Technol Bamako, Lab Phys Chim Mat, BP E 2306, Bamako, Mali..
    Dembele, Cheick
    Univ Sci Tech & Technol Bamako, Lab Phys Chim Mat, BP E 2306, Bamako, Mali..
    Salazar-Alvarez, German
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden.;Royal Inst Thchnol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden..
    Bergström, Lennart
    Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden..
    Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 41, p. 19278-19284Article in journal (Refereed)
    Abstract [en]

    Inspired by the Bogolanfini dyeing technique, we report how flexible nanofibrillated cellulose (CNF) films can be functionalized and patterned by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions with tunable colors. Molecular dynamics simulations show that gallic acid (GA) and ellagic acid (EA) rapidly adsorb and assemble on the CNF surface, and atomic force microscopy confirms that nanosized GA assemblies cover the surface of the CNF. CNF films were patterned with tannin-metal ion nanoparticles by an in-fibre reaction between the pre-impregnated tannin and the metal ions in the printing ink. Spectroscopic studies show that the Fe-III/II ions interact with GA and form surface-bound, stable GA-Fe-III/II nanoparticles. The functionalization and patterning of CNF films with metal ion-hydrolyzable tannin nanoparticles is a versatile route to functionalize films based on renewable materials and of interest for biomedical and environmental applications.

  • 133.
    Lindén, Pär A.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Stabilising mannose using sodium dithionite at alkaline conditions2020In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 74, no 2, p. 131-140Article in journal (Refereed)
    Abstract [en]

    The kraft process remains the dominant-chemical pulping process but still struggles with extensive hemicellulose degradation. Such degradation has previously been mitigated through the use of anthraquinone; but due to it recently being found to have carcinogenic properties, anthraquinone is now being phased out. One alternative, sodium dithionite, was initially investigated in the 1950s but was found to be unviable. The present study investigated whether sodium dithionite could be made viable through the use of different processing parameters, using mannose as a model compound and measuring the yield of mannitol in the various systems using gas chromatography with flame ionization detection (GC-FID) and nuclear magnetic resonance (NMR). Alkalinity was found to be crucial; at pH 14 as well as pH 7, dithionite indeed proved unviable, but if pH was kept at either 8 or 10 significant reduction was seen to occur. The best results were obtained at pH 10 when a lower temperature (70 degrees C) was used to compensate for alkaline degradation of the mannose reactant.

  • 134.
    Liu, Jun
    et al.
    Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Wood & Paper Chem, Porthansgatan 3-5, FI-20500 Turku, Finland.;Jiangsu Univ, Dept Environm & Safety, Biofuels Inst, Zhenjiang 212013, Peoples R China..
    Leppanen, Ann-Sofie
    Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Wood & Paper Chem, Porthansgatan 3-5, FI-20500 Turku, Finland..
    Kisonen, Victor
    Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Wood & Paper Chem, Porthansgatan 3-5, FI-20500 Turku, Finland..
    Willfor, Stefan
    Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Wood & Paper Chem, Porthansgatan 3-5, FI-20500 Turku, Finland..
    Xu, Chunlin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Wood & Paper Chem, Porthansgatan 3-5, FI-20500 Turku, Finland..
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Insights on the distribution of substitutions in spruce galactoglucomannan and its derivatives using integrated chemo-enzymatic deconstruction, chromatography and mass spectrometry2018In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 112, p. 616-625Article in journal (Refereed)
    Abstract [en]

    Accurate determination of the distribution of substitutions in the primary molecular structure of heteropolysaccharides and their derivatives is a prerequisite for their increasing application in the pharmaceutical and biomedical fields, which is unfortunately hindered due to the lack of effective analytical techniques. Acetylated galactoglucomannan (GGM) is an abundant plant polysaccharide as the main hemicellulose in softwoods, and therefore constitutes an important renewable resource from lignocellulosic biomass for the development of bioactive and functional materials. Here we present a methodology for profiling the intramolecular structure of spruce GGM and its chemical derivatives (cationic, anionic, and benzoylated) by combining chemo-enzymatic hydrolysis, liquid chromatography, and mass spectrometry. Fast identification and qualitative mass profiling of GGM and its derivatives was conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and electrospray ionization mass spectrometry (ESI-MS). Tandem mass fragmentation analysis and its hyphenation with hydrophilic interaction liquid chromatography (HILIC-ESI-MS/MS) provide further insights on the substitution placement of the GGM oligosaccharides and its derivatives. This method will be useful in understanding the structure-function relationships of native GGM and their derivatives, and therefore facilitate their potential application. 

  • 135.
    Liu, Yingxin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.
    Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin2018In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, no 4, p. 5524-5532Article in journal (Refereed)
    Abstract [en]

    We demonstrated that industrial lignin can be facilely processed with carboxylated cellulose nanofibril (CNF) to obtain strong, flexible, and transparent nanocomposites via film casting of dispersions. The tensile strength and strain to failure of lignin-CNF nanocomposites (245 MPa and 15%, respectively at 7.7 wt % of lignin) are superior to previously reported polymer/nanoparticle-CNF composites with polymer contents below SO wt %, such as poly(vinyl alcohol)CNF films and even reduced graphene oxide-CNF films. The excellent mechanical properties of lignin-CNF nanocomposite films are related to the lignin-enhanced colloidal stability and dispersity of CNF in aqueous dispersions supported by measurements of rheology and dynamic light scattering, which accordingly suppresses the excess fibril aggregates during film formation. Moreover, lignin in the nanocomposites benefits an efficient functionalization of gold/iron oxide nanoparticles on the surface of nanocomposites. This study illustrates the great potential of industrial lignin in developing nanocellulose-based materials with advanced properties and functionalities.

  • 136.
    Liu, Yingxin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Agthe, Michael
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Univ Hamburg, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany..
    Salajkova, Michaela
    Univ Oslo, Dept Biosci, N-0371 Oslo, Norway..
    Gordeyeva, Korneliya
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Guccini, Valentina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Fall, Andreas
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;RISE Bioecon, Box 5604, S-11486 Stockholm, Sweden..
    Salazar-Alvarez, German
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Schuetz, Christina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg..
    Bergstrom, Lennart
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 38, p. 18113-18118Article in journal (Refereed)
    Abstract [en]

    Assembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration

  • 137.
    Liu, Yingxin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.
    Schütz, Christina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm.
    Salazar, German
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm.
    Bergström, Lennart
    Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose spersions2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 10, p. 3600-3606Article in journal (Refereed)
    Abstract [en]

    The ability to probe the assembly, gelation, and helicoidal nsolidation of cellulose nanocrystal (CNC) dispersions at high ncentrations can provide unique insight into the assembly and can sist optimized manufacturing of CNC-based photonic and structural terials. In this Feature Article, we review and discuss the ncentration dependence of the structural features, characterized by e particle separation distance and the helical pitch, at CNC ncentrations (c) that range from the isotropic state, over the phasic range, to the fully liquid crystalline state. The structure olution of CNC dispersions probed by time resolved small-angle X-ray attering during evaporation-induced assembly highlighted the portance of gelation and consolidation at high concentrations. We iefly discuss how the homogeneity of helicoidal nanostructures in dry

  • 138.
    Liu, Yingxin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Stoeckel, Daniela
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Gordeyeva, Korneliya
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Agthe, Michael
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Univ Hamburg, Ctr Free Electron Laser Sci, DE-22761 Hamburg, Germany..
    Schutz, Christina
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Univ Luxembourg, Phys & Mat Res Unit, L-1511 Luxembourg, Luxembourg..
    Fall, Andreas B.
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;RISE Bioecon, Box 5604, SE-11486 Stockholm, Sweden..
    Bergstrom, Lennart
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion2018In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 7, no 2, p. 172-177Article in journal (Refereed)
    Abstract [en]

    We have followed the structural evolution during evaporation-induced self-assembly of sulfonated cellulose nanocrystal (CNC) in the presence of H+ and Li+ counterions by small-angle X-ray scattering. Drying of CNC-H dispersions results in ordered films that could not be readily redispersed, while the CNC-Li films were disordered and prone to reswelling and redispersion. The scaling of the separation distance (d) between CNC particles and the particle concentration (c) shows that the CNC-H dispersions display a unidimensional contraction of the nematic structure (d alpha c(-1)) during drying, while the CNC-Li dispersions consolidate isotropically (d alpha c(-1/3)), which is characteristic for hydrogels with no preferential orientation. Temporal evolution of the structure factor and complementary dynamic light-scattering measurements show that CNC-Li is more aggregated than CNC-H during evaporation-induced assembly. Insights on the structural evolution during CNC assembly and redispersion can promote development of novel and optimized processing routes of nanocellulose-based materials.

  • 139.
    Liu, Yingxin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.
    Yu, Shu-Hong
    Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Div Nanomat & Chem,Hefei Natl Lab Phys Sci, Hefei 230026, Anhui, Peoples R China..
    Bergström, Lennart
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.
    Transparent and Flexible Nacre-Like Hybrid Films of Aminoclays and Carboxylated Cellulose Nanofibrils2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 27, article id 1703277Article in journal (Refereed)
    Abstract [en]

    Nacre and other biological composites are important inspirations for the design and fabrication of multifunctional composite materials. Transparent, strong, and flexible hybrid films of aminoclays (AC) and carboxylated cellulose nanofibrils (CNF) with a nacre-like microstructure at AC contents up to 60 wt% are prepared. The high transmittance of visible light is attributed to the high homogeneity of the hybrid films and to the relatively small refractive index contrast between the CNF-based matrix and synthetic AC. The strength and strain to failure of the hybrids are significantly higher than biogenic nacre and other nacre-mimicking nanocellulose-based materials, e.g., montmorillonite-CNF and graphene oxide-CNF composite films. The excellent mechanical properties are related to the ionic bonds between the negatively charged carboxylic groups on the CNF and the positively charged amine groups on the AC nanoparticles. This work illustrates the significance of tailoring the interactions between small clay particles and biopolymers in multifunctional materials with potential applications as printable barrier coatings and sub-strates for optoelectronics.

  • 140.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gedde, Ulf W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative2018In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 1, no 6, p. 2669-2677Article in journal (Refereed)
    Abstract [en]

    This work reports the development of a sustainable and green one-step wet-feeding method to prepare tougher and stronger nanocomposites from biodegradable cellulose nanofibrils (CNF)/polycaprolactone (PCL) constituents, compatibilized with reversible addition fragmentation chain transfer-mediated surfactant-free poly(methyl methacrylate) (PMMA) latex nanoparticles. When a PMMA latex is used, a favorable electrostatic interaction between CNF and the latex is obtained, which facilitates mixing of the constituents and hinders CNF agglomeration. The improved dispersion is manifested in significant improvement of mechanical properties compared with the reference material. The tensile tests show much higher modulus (620 MPa) and strength (23 MPa) at 10 wt % CNF content (compared to the neat PCL reference modulus of 240 and 16 MPa strength), while maintaining high level of work to fracture the matrix (7 times higher than the reference nanocomposite without the latex compatibilizer). Rheological analysis showed a strongly increased viscosity as the PMMA latex was added, that is, from a well-dispersed and strongly interacting CNF network in the PCL.

  • 141.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Spinella, Stephen
    NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, New York 11201, United States.
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaseca, Fabiola
    BIMATEC Group, Department of Chemical Engineering, Agricultural and Food Technology, University of Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain.
    Larsson, Per Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. RISE Bioeconomy, Teknikringen 56, Stockholm, SE-100 44, Sweden.
    Adås, Fredrik
    RISE Bioeconomy, Teknikringen 56, Stockholm, SE-100 44, Sweden.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance2018In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 6, p. 6753-6760Article in journal (Refereed)
    Abstract [en]

    Poly(epsilon-caprolactone) (PCL) is a ductile thermoplastic, which is biodegradable in the marine environment. Limitations include low strength, petroleum-based origin, and comparably high cost. Cellulose fiber reinforcement is therefore of interest although uniform fiber dispersion is a challenge. In this study, a one-step wet compounding is proposed to validate a sustainable and feasible method to improve the dispersion of the cellulose fibers in hydrophobic polymer matrix as PCL, which showed to be insensitive to the presence of the water during the processing. A comparison between unmodified and acetylated cellulosic wood fibers is made to further assess the net effect of the wet feeding and chemical modification on the biocomposites properties, and the influence of acetylation on fiber structure is reported (ATR-FTIR, XRD). Effects of processing on nano fibrillation, shortening, and dispersion of the cellulose fibers are assessed as well as on PCL molar mass. Mechanical testing, dynamic mechanical thermal analysis, FE-SEM, and X-ray tomography is used to characterize composites. With the addition of 20 wt % cellulosic fibers, the Young's modulus increased from 240 MPa (neat PCL) to 1850 MPa for the biocomposites produced by using the wet feeding strategy, compared to 690 MPa showed for the biocomposites produced using dry feeling. A wet feeding of acetylated cellulosic fibers allowed even a greater increase, with an additional 46% and 248% increase of the ultimate strength and Young's modulus, when compared to wet feeding of the unmodified pulp, respectively.

    Download full text (pdf)
    fulltext
  • 142. Lombardo, S.
    et al.
    Chen, Pan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Thielemans, W.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Svagan, Anna J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 19, p. 5464-5473Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibers (CNFs) have interesting physicochemical and colloidal properties that have been recently exploited in novel drug-delivery systems for tailored release of poorly soluble drugs. The morphology and release kinetics of such drug-delivery systems heavily relied on the drug-CNF interactions; however, in-depth understanding of the interactions was lacking. Herein, the interactions between a poorly soluble model drug molecule, furosemide, and cationic cellulose nanofibers with two different degrees of substitution are studied by sorption experiments, Fourier transform infrared spectroscopy, and molecular dynamics (MD) simulation. Both MD simulations and experimental results confirmed the spontaneous sorption of drug onto CNF. Simulations further showed that adsorption occurred by the flat aryl ring of furosemide. The spontaneous sorption was commensurate with large entropy gains as a result of release of surface-bound water. Association between furosemide molecules furthermore enabled surface precipitation as indicated by both simulations and experiments. Finally, sorption was also found not to be driven by charge neutralization, between positive CNF surface charges and the furosemide negative charge, so that surface area is the single most important parameter determining the amount of sorbed drug. An optimized CNF-furosemide drug-delivery vehicle thus needs to have a maximized specific surface area irrespective of the surface charge with which it is achieved. The findings also provide important insights into the design principles of CNF-based filters suitable for removal of poorly soluble drugs from wastewater.

  • 143.
    Lu, Huiran
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Hagberg, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Lindbergh, Göran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Cornell, Ann M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Flexible and Lightweight Lithium-Ion Batteries Based on Cellulose Nanofibrils and Carbon Fibers2018In: BATTERIES-BASEL, ISSN 2313-0105, Vol. 4, no 2, article id 17Article in journal (Refereed)
    Abstract [en]

    Flexible, low-weight electrodes with integrated current collectors based on chopped polyacrylonitrile carbon fibers (CF) were produced using an easy, aqueous fabrication process, where only 4 wt% of TEMPO-oxidized cellulose nanofibrils (CNF) were used as the binder. A flexible full cell was assembled based on a LiFePO4 (LFP) positive electrode with a CF current collector and a current collector-free CF negative electrode. The cell exhibited a stable specific capacity of 121 mAh g(-1) based on the LFP weight. The CF in the negative electrode acted simultaneously as active material and current collector, which has a significant positive impact on energy density. Stable specific capacities of the CF/CNF negative electrode of 267 mAh g(-1) at 0.1 C and 150 mAh g(-1) at 1 C are demonstrated. The LFP/CNF with CF/CNF, as the current collector positive electrode (LFP-CF), exhibited a good rate performance with a capacity of -150 mAh g(-1) at 0.1 C and 133 mAh g(-1) at 1 C. The polarization of the LFP-CF electrode was similar to that of a commercial Quallion LFP electrode, while much lower compared to a flexible LFP/CNF electrode with Al foil as the current collector. This is ascribed to good contact between the CF and the active material.

  • 144.
    MacKenzie, Jordan
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Turbulent stress measurements of fibre suspensions in a straight pipe2018In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 30, no 2, article id 025104Article in journal (Refereed)
    Abstract [en]

    The focus of the present work is an experimental study of the behaviour of semi-dilute, opaque fibre suspensions in fully developed cylindrical pipe flows. Measurements of the normal and turbulent shear stress components and the mean flow were acquired using phase-contrast magnetic resonance velocimetry. Two fibre types, namely, pulp fibre and nylon fibre, were considered in this work and are known to differ in elastic modulus. In total, three different mass concentrations and seven Reynolds numbers were tested to investigate the effects of fibre interactions during the transition from the plug flow to fully turbulent flow. It was found that in fully turbulent flows of nylon fibres, the normal, < u(z)u(z)>(+), and shear, < u(z)u(z)>(+) (note that <.> is the temporal average, u is the fluctuating velocity, z is the axial or streamwise component, and r is the radial direction), turbulent stresses increased with Reynolds number regardless of the crowding number (a concentration measure). For pulp fibre, the turbulent stresses increased with Reynolds number when a fibre plug was present in the flow and were spatially similar in magnitude when no fibre plug was present. Pressure spectra revealed that the stiff, nylon fibre reduced the energy in the inertial-subrange with an increasing Reynolds and crowding number, whereas the less stiff pulp fibre effectively cuts the energy cascade prematurely when the network was fully dispersed.

  • 145.
    Malmström, Eva
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Pendergraph, Samuel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Versatile modification of cellulose by UV-induced surface-initiated ATRP2015In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 146.
    Malmström, Eva
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Telaretti Leggieri, Rosella
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Polymer modification of nanocellulose in water: A versatile approach to new materials2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 147. Marcotuli, Ilaria
    et al.
    Colasuonno, Pasqualina
    Hsieh, Yves S. Y.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fincher, Geoffrey B.
    Gadaleta, Agata
    Non-Starch Polysaccharides in Durum Wheat: A Review2020In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 21, no 8, p. 2933-Article in journal (Refereed)
    Abstract [en]

    Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine. However, this dietary component can be digested by microorganisms in the large intestine and imparts physiological benefits at daily intake levels of 30&ndash;35 g. Dietary fibre in cereal grains largely comprises cell wall polymers and includes insoluble (cellulose, part of the hemicellulose component and lignin) and soluble (arabinoxylans and (1,3;1,4)-&beta;-glucans) fibre. More specifically, certain components provide immunomodulatory and cholesterol lowering activity, faecal bulking effects, enhanced absorption of certain minerals, prebiotic effects and, through these effects, reduce the risk of type II diabetes, cardiovascular disease and colorectal cancer. Thus, dietary fibre is attracting increasing interest from cereal processors, producers and consumers. Compared with other components of the durum wheat grain, fibre components have not been studied extensively. Here, we have summarised the current status of knowledge on the genetic control of arabinoxylan and (1,3;1,4)-&beta;-glucan synthesis and accumulation in durum wheat grain. Indeed, the recent results obtained in durum wheat open the way for the improvement of these important cereal quality parameters.

  • 148.
    Martinez-Abad, Antonio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. AlbaNova University Centre.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed)
    Abstract [en]

    Hardwoods constitute an essential renewable resource for the production of platform chemicals and bio-based materials. A method for the sequential extraction of hemicelluloses and lignin from hardwoods is proposed using subcritical water in buffered conditions without prior delignification. This allows the cascade isolation of mannan, xylan and lignin-carbohydrate complexes based on their extractability and recalcitrance in birch lignocellulose. The time evolution of the extraction was monitored in terms of composition, oligomeric mass profiling and sequencing of the hemicelluloses, and molecular structure of the lignin and lignin-carbohydrate complexes (LCCs) by heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR). The minor mannan and pectin populations are easily extractable at short times (<5 min), whereas the major glucuronoxylan (GX) becomes enriched at moderate extraction times. Longer extraction times results in major hydrolysis exhibiting GX fractions with tighter glucuronation spacing and lignin enrichment. The pattern of acetylation and glucuronation in GX is correlated with extractability and with connectivity with lignin through LCCs. This interconnected molecular heterogeneity of hemicelluloses and lignin has important implications for their supramolecular assembly and therefore determines the recalcitrance of hardwood lignocellulosic biomass.

    Download full text (pdf)
    fulltext
  • 149.
    Martinez-Abad, Antonio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. Univ Alicante, Analyt Chem Nutr & Food Sci, Alicante, Spain.
    Jimenez-Quero, Amparo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Spruce hemicelluloses (galactoglucomannan and arabinoglucuronoxylan): Interplay with cellulose and lignin in softwoods2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 150.
    Martinez-Abad, Antonio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Quero, Amparo Jimenez
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Berglund, Jennie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Wallenberg Wood Sci Ctr, Stockholm, Sweden.;KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Influence of the molecular structure of wood hemicelluloses on the recalcitrance of lignocellulosic biomass2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
12345 101 - 150 of 233
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf