Change search
Refine search result
1234 101 - 150 of 160
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for long-lived particles produced in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052005Article in journal (Refereed)
    Abstract [en]

    A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb(-1) of proton-proton collision data at root s =13 TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two-vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

  • 102. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at root s=13 TeV2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 8, article id 081801Article in journal (Refereed)
    Abstract [en]

    Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb(-1) and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

  • 103. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at root s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 2, article id 102Article in journal (Refereed)
    Abstract [en]

    A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

  • 104. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detectorSearch for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detector.2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 8, article id 625Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in final states containing an e(+)e(-) or m(+)m(-) pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton-proton collision data with an integrated luminosity of 36.1 fb(-1), collected during 2015 and 2016 at a centre of-mass energy Os = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an e(+)e(-) or m(+)m(-) pair and the lightest neutralino ((c) over tilde (0)(1)) via one of two next-to-lightest neutralino ((c) over tilde (0)(2)) decay mechanisms: (c) over tilde (0)(2) Z (c) over tilde (0)(1), where the Z boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the Z boson mass; and (c) over tilde (0)(2) l(+)1(-) (c) over tilde (0)(1) with no intermediate l(+)l(-) resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 and 1.3 TeV at 95% confidence level, respectively.

  • 105. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032016Article in journal (Refereed)
    Abstract [en]

    A search for new resonances decaying into jets containing b-hadrons in pp collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 to 7 TeV. The data set corresponds to an integrated luminosity of up to 36.1 fb(-1) collected in 2015 and 2016 at root s = 13 TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% C.L. In addition, 95% C.L. upper limits are set on the cross sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

  • 106. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Search for R-parity-violating supersymmetric particles in multi-jet final states produced in p–p collisions at s=13 TeV using the ATLAS detector at the LHC2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, p. 136-158Article in journal (Refereed)
    Abstract [en]

    Results of a search for gluino pair production with subsequent R-parity-violating decays to quarks are presented. This search uses 36.1 fb−1 of data collected by the ATLAS detector in proton–proton collisions with a centre-of-mass energy of s=13 TeV at the LHC. The analysis is performed using requirements on the number of jets and the number of jets tagged as containing a b-hadron as well as a topological observable formed by the scalar sum of masses of large-radius jets in the event. No significant excess above the expected Standard Model background is observed. Limits are set on the production of gluinos in models with the R-parity-violating decays of either the gluino itself (direct decay) or the neutralino produced in the R-parity-conserving gluino decay (cascade decay). In the gluino cascade decay model, gluino masses below 1850 GeV are excluded for 1000 GeV neutralino mass. For the gluino direct decay model, the 95% confidence level upper limit on the cross section times branching ratio varies between 0.80 fb at mg˜=900 GeV and 0.011 fb at mg˜=1800 GeV.

  • 107.
    Aaboud, M
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 21, article id 211802Article in journal (Refereed)
    Abstract [en]

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH -> l(+)l(-) cc is studied. A data set with an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13TeV recorded by the ATLAS experiment at the LHC is used. The H -> cc signature is identified using charm-tagging algorithms. The observed (expected) upper limit on sigma(pp -> ZH) x B(H -> cc) is 2.7 (3.9(-2.1)(+2.1) ) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

  • 108. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for top squarks decaying to tau sleptons in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032008Article in journal (Refereed)
    Abstract [en]

    A search for direct pair production of top squarks in final states with two tau leptons, b-jets, and missing transverse momentum is presented. The analysis is based on proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. Two exclusive channels with either two hadronically decaying tau leptons or one hadronically and one leptonically decaying tau lepton are considered. No significant deviation from the Standard Model predictions is observed in the data. The analysis results are interpreted in terms of model-independent limits and used to derive exclusion limits on the masses of the top squark (t) over tilde (1) and the tau slepton (tau) over tilde (1) in a simplified model of supersymmetry with a nearly massless gravitino. In this model, masses up to m((t) over tilde (1)) = 1.16 TeV and m ((tau) over tilde (1)) = 1.00 TeV are excluded at 95% confidence level.

  • 109.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for top-quark decays t -> Hq with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 123Article in journal (Refereed)
    Abstract [en]

    A search for flavour-changing neutral current decays of a top quark into an up-type quark (q = u, c) and the Standard Model Higgs boson, t Hq, is presented. The search is based on a dataset of pp collisions at = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 36.1 fb(-1). Two complementary analyses are performed to search for top-quark pair events in which one top quark decays into Wb and the other top quark decays into Hq, and target the Hbb and H (+-) decay modes, respectively. The high multiplicity of b-quark jets, or the presence of hadronically decaying -leptons, is exploited in the two analyses respectively. Multivariate techniques are used to separate the signal from the background, which is dominated by top-quark pair production. No significant excess of events above the background expectation is found, and 95% CL upper limits on the t Hq branching ratios are derived. The combination of these searches with ATLAS searches in diphoton and multilepton final states yields observed (expected) 95% CL upper limits on the t Hc and t Hu branching ratios of 1.1 x 10(-3) (8.3 x 10(-4)) and 1.2 x 10(-3) (8.3 x 10(-4)), respectively. The corresponding combined observed (expected) upper limits on the |(tcH)| and |(tuH)| couplings are 0.064 (0.055) and 0.066 (0.055), respectively.

  • 110. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Searches for exclusive Higgs and Z boson decays into J/ψ γ, ψ(2S) γ, and ϒ(nS) γ at s=13TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 786, p. 134-155Article in journal (Refereed)
    Abstract [en]

    Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ, ψ(2S), or ϒ(nS) (n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1fb−1 collected at s=13TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ψγ, ψ(2S)γ, and ϒ(nS)γ of 3.5×10−4, 2.0×10−3, and (4.9,5.9,5.7)×10−4, respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10−6, 4.5×10−6 and (2.8,1.7,4.8)×10−6, respectively.

  • 111. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Searches for heavy ZZ and ZW resonances in the llqq and vvqq final states in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 3, article id 009Article in journal (Refereed)
    Abstract [en]

    This paper reports searches for heavy resonances decaying into ZZ or ZW using data from proton-proton collisions at a centre-of-mass energy of root s - 13 TeV. The data, corresponding to an integrated luminosity of 36.1 fb(-1), were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The searches are performed in final states in which one Z boson decays into either a pair of light charged leptons (electrons and muons) or a pair of neutrinos, and the associated W boson or the other Z boson decays hadronically. No evidence of the production of heavy resonances is observed. Upper bounds on the production cross sections of heavy resonances times their decay branching ratios to ZZ or ZW are derived in the mass range 300-5000 GeV within the context of Standard Model extensions with additional Higgs bosons, a heavy vector triplet or warped extra dimensions. Production through gluon-gluon fusion, Drell-Yan or vector-boson fusion are considered, depending on the assumed model.

  • 112. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al., L.
    Measurement of lepton differential distributions and the top quark mass in &ITt&IT(&ITt&IT)over-bar production in &ITpp&IT collisions at a root&ITs & 8TeV with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 11, article id 804Article in journal (Refereed)
    Abstract [en]

    This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t(t)over-bar events produced in 20.2 fb(-1) of root s = 8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge e mu pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m(t)(pole) = 173.2 +/- 0.9 +/- 0.8 +/- 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

  • 113. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector2018In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490XArticle in journal (Refereed)
    Abstract [en]

    A search for the associated production of the Higgs boson with a top quark pair ((tt) over barH) is reported. The search is performed in multilepton final states using a data set corresponding to an integrated luminosity of 36.1 fb(-1) of proton-proton collision data recorded by the ATLAS experiment at a center-of-mass energy root s = 13 TeV at the Large Hadron Collider. Higgs boson decays to WW*, tau tau, and ZZ* are targeted. Seven final states, categorized by the number and flavor of charged-lepton candidates, are examined for the presence of the Standard Model Higgs boson with a mass of 125 GeVand a pair of top quarks. An excess of events over the expected background from Standard Model processes is found with an observed significance of 4.1 standard deviations, compared to an expectation of 2.8 standard deviations. The best fit for the (tt) over barH production cross section is sot (tt) over barH) = 790(-210)(+230) fb, in agreement with the Standard Model prediction of 507(-50)(+35) fb. The combination of this result with other t <overline> tH searches from the ATLAS experiment using the Higgs boson decay modes to b (b) over bar, gamma gamma and ZZ* -> 4l, has an observed significance of 4.2 standard deviations, compared to an expectation of 3.8 standard deviations. This provides evidence for the (tt) over barH production mode.

  • 114. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics.
    Zwalinski, L.
    et.al.,
    Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at s=8 TeV using the ATLAS detector2018In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, p. 295-317Article in journal (Refereed)
    Abstract [en]

    This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton–proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb−1. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: |ηγ|<1.37 and 1.56<|ηγ|<2.37. The measurement covers photon transverse energies 25<ET γ<400 GeV and 25<ET γ<350 GeV respectively for the two |ηγ| regions. For each jet flavour, the ratio of the cross sections in the two |ηγ| regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central γ+b measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

  • 115. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p plus Pb collisions with the ATLAS detector at the CERN Large Hadron Collider2018In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490XArticle in journal (Refereed)
    Abstract [en]

    A detailed study of multiparticle azimuthal correlations is presented using pp data at root s = 5.02 and 13 TeV, and p+Pb data at root s(NN) = 5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants c(n){4} and flow coefficients v(n){4} = (-c(n){4})(1/4) for n = 2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of c(n){4} are obtained as a function of the average number of charged particles per event, < N-ch >, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jetswith a positive contribution to c(n){4}. The threesubevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c(2){4}, and therefore a well-defined v(2){4}, nearly independent of < N-ch >, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v(2){4} is found to be smaller than the v(2){2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v(2){4} and v(2){2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.

  • 116. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetric partners of top quarks decaying as (t) over tilde (1) -> c (chi) over tilde (0)(1)and supersymmetric partners of charm quarks decaying as (c) over tilde (1) -> c (chi) over tilde (0 )(1)where (chi) over tilde (0)(1) is the lightest neutralino, is presented. The search uses 36.1 fb(-1) pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to c (chi) over tilde (0)(1), top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For m (t) over tilde (1,(c) over tilde1) - m((chi) over tilde 10)< 100 GeV, top and charm squark masses up to 500 GeV are excluded.

  • 117. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Measurement of the exclusive γγ → μ+μ− process in proton–proton collisions at s=13TeV with the ATLAS detector2018In: Modern physics letters B, ISSN 0217-9849, Vol. 777, p. 303-323Article in journal (Refereed)
    Abstract [en]

    The production of exclusive γγ→μ+μ− events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb−1. The measurement is performed for a dimuon invariant mass of 12GeV<mμ+μ−<70GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions both with and without corrections for absorptive effects. 

  • 118. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 7, article id 089Article in journal (Refereed)
    Abstract [en]

    A search for pair production of up-type vector-like quarks (T) with a significant branching ratio into a top quark and either a Standard Model Higgs boson or a Z boson is presented. The same analysis is also used to search for four-top-quark production in several new physics scenarios. The search is based on a dataset of pp collisions at root s = 13TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb(-1). Data are analysed in the lepton+jets final state, characterised by an isolated electron or muon with high transverse momentum, large missing transverse momentum and multiple jets, as well as the jets+E-T(miss) final state, characterised by multiple jets and large missing transverse momentum. The search exploits the high multiplicity of jets identified as originating from b-quarks, and the presence of boosted, hadronically decaying top quarks and Higgs bosons reconstructed as large-radius jets, characteristic of signal events. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross sections for the different signal processes considered. These cross-section limits are used to derive lower limits on the mass of a vector-like T quark under several branching ratio hypotheses assuming contributions from T -> Wb, Zt, Ht decays. The 95% CL observed lower limits on the T quark mass range between 0.99TeV and 1.43TeV for all possible values of the branching ratios into the three decay modes considered, significantly extending the reach beyond that of previous searches. Additionally, upper limits on anomalous four-top-quark production are set in the context of an effective field theory model, as well as in an universal extra dimensions model.

  • 119.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA.;Univ Calif Berkeley, Berkeley, CA 94720 USA.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Angular analysis of B-d(0) -> K* mu(+)mu(-) decays in pp collisions at root s=8 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 047Article in journal (Refereed)
    Abstract [en]

    An angular analysis of the decay B-d(0) -> K*mu(+)mu(-) is presented, based on proton-proton collision data recorded by the ATLAS experiment at the LHC. The study is using 20.3 fb(-1) of integrated luminosity collected during 2012 at centre-of-mass energy of root s = 8TeV. Measurements of the K* longitudinal polarisation fraction and a set of angular parameters obtained for this decay are presented. The results are compatible with the Standard Model predictions.

  • 120.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurement of jet fragmentation in 5.02 TeV proton-lead and proton-proton collisions with the ATLAS detector2018In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 978, p. 65-106Article in journal (Refereed)
    Abstract [en]

    A measurement of the fragmentation functions of jets into charged particles in p Pb collisions and pp collisions is presented. The analysis utilizes 28 nb(-1) of p Pb data and 26 pb(-1) of pp data, both at root(TN)-T-s= 5.02 TeV, collected in 2013 and 2015, respectively, with the ATLAS detector at the LHC. The measurement is reported in the centre-of-mass frame of the nucleon-nucleon system for jets in the rapidity range vertical bar y*vertical bar <1.6 and with transverse momentum 45 < p(T) < 260 GeV. Results are presented both as a function of the charged-particle transverse momentum and as a function of the longitudinal momentum fraction of the particle with respect to the jet. The pp fragmentation functions are compared with results from Monte Carlo event generators and two theoretical models. The ratios of the p +Pb to pp fragmentation functions are found to be consistent with unity.

  • 121. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the gamma gamma jj final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 782, p. 750-767Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for exotic decays of the Higgs boson to a pair of new (pseudo) scalar particles, H -> aa, where the a particle has a mass in the range 20-60 GeV, and where one of the a bosons decays into a pair of photons and the other to a pair of gluons. The search is performed in event samples enhanced in vector-boson fusion Higgs boson production by requiring two jets with large invariant mass in addition to the Higgs boson candidate decay products. The analysis is based on the full dataset of pp collisions at root s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 36.7 fb(-1). The data are in agreement with the Standard Model predictions and an upper limit at the 95% confidence level is placed on the production cross section times the branching ratio for the decay H -> aa -> gamma gamma gg. This limit ranges from 3.1 pb to 9.0 pb depending on the mass of the a boson.

  • 122. Aaboud, M.
    et al.
    Lund jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for scalar resonances decaying into mu(+)mu(-) in events with and without b-tagged jets produced in proton-proton collisions at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 7, article id 117Article in journal (Refereed)
    Abstract [en]

    A search for a narrow scalar resonance decaying into an opposite-sign muon pair produced in events with and without b-tagged jets is presented in this paper. The search uses 36.1 fb(-1) of =13 TeV proton-proton collision data recorded by the ATLAS experiment at the LHC. No significant excess of events above the expected Standard Model background is observed in the investigated mass range of 0.2 to 1.0 TeV. The observed upper limits at 95% confidence level on the cross section times branching ratio for b-quark associated production and gluon-gluon fusion are between 1.9 and 41 fb and 1.6 and 44 fb respectively, which is consistent with expectations.

  • 123.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, LPHEA Marrakech, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lundberg-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of the Z gamma ->nu nu gamma production cross section in pp collisions at root s=13 TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 010Article in journal (Refereed)
    Abstract [en]

    The production of Z bosons in association with a high-energy photon (Z production) is studied in the neutrino decay channel of the Z boson using pp collisions at =13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1fb(-1) collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate Z events with invisible decays of the Z boson are selected by requiring significant transverse momentum (p(T)) of the dineutrino system in conjunction with a single isolated photon with large transverse energy (E-T). The rate of Z production is measured as a function of photon E-T, dineutrino system p(T) and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in Z production with photon E-T greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of ZZ and Z couplings

  • 124.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Constraints on mediator-based dark matter and scalar dark energy models using root s= 13 TeV pp collision data collected by the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 142Article in journal (Refereed)
    Abstract [en]

    Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 37 fb(-1) = 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015-2016 are summarised in this paper. The results of experimental searches in a variety of final states are interpreted in terms of a set of spin-1 and spin-0 single-mediator dark matter simplified models and a second set of models involving an extended Higgs sector plus an additional vector or pseudo-scalar mediator. The searches considered in this paper constrain spin-1 leptophobic and leptophilic mediators, spin-0 colour-neutral and colour-charged mediators and vector or pseudo-scalar mediators embedded in extended Higgs sector models. In this case, also = 8 TeV pp collision data are used for the interpretation of the results. The results are also interpreted for the first time in terms of light scalar particles that could contribute to the accelerating expansion of the universe (dark energy).

  • 125.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Woods, N.
    Univ Wisconsin, Madison, WI USA..
    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 088Article in journal (Refereed)
    Abstract [en]

    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.

  • 126.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of VH, H -> b(b)over-barproduction as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 141Article in journal (Refereed)
    Abstract [en]

    Cross-sections of associated production of a Higgs boson decaying into bottomquark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the simplified template cross-section' framework. The results are obtained using 79.8 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons.

  • 127.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of W +/- Z production cross sections and gauge boson polarisation in pp collisions at root s=13 TeV with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 6, article id 535Article in journal (Refereed)
    Abstract [en]

    This paper presents measurements of W +/- Z production cross sections in pp collisions at a centre-of-mass energy of 13TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1fb-1. The W +/- Z candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is sigma W +/- Zfid.=63.7fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of 61.5-1.3+1.4fb. Cross sections for W+Z and W-Z production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of W and Z bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the W and Z bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

  • 128.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Observation of electroweak W(+/-)Z boson pair production in association with two jets in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 793, p. 469-492Article in journal (Refereed)
    Abstract [en]

    An observation of electroweak W(+/-)Z production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of root s = 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb(-1). Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of W(+/-)Z bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects and for a single leptonic decay mode is measured to be sigma(WZjj-EW) = 0.57(-0.13)(+0.14) (stat.) (+0.07)(-0.06) (syst.) fb. Total and differential fiducial cross-sections of the sum of W(+/-)Zjj electroweak and strong productions for several kinematic observables are also measured.

  • 129.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for heavy charged long-lived particles in proton-proton collisions at root s=13 TeV using an ionisation measurement with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 788, p. 96-116Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for heavy charged long-lived particles produced in proton-proton collisions at root s= 13 TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV. B.V.

  • 130.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for single production of vector-like quarks decaying into Wb in pp collisions at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 164Article in journal (Refereed)
    Abstract [en]

    A search for singly produced vector-like quarks Q, where Q can be either a T quark with charge +2/3 or a Y quark with charge -4/3, is performed in proton-proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1), recorded with the ATLAS detector at the LHC in 2015 and 2016. The analysis targets Q -> Wb decays where the W boson decays leptonically. No significant deviation from the expected Standard Model background is observed. Upper limits are set on the QWb coupling strength and the mixing between the Standard Model sector and a singlet T quark or a Y quark from a (B, Y) doublet or a (T, B, Y) triplet, taking into account the interference effects with the Standard Model background. The upper limits set on the mixing angle are as small as vertical bar sin theta(L)vertical bar = 0.18 for a singlet T quark of mass 800 GeV, vertical bar sin theta(R)vertical bar = 0.17 for a Y quark of mass 800 GeV in a (B, Y) doublet model and vertical bar sin theta(L)vertical bar = 0: 16 for a Y quark of mass 800 GeV in a (T, B, Y) triplet model. Within a (B, Y) doublet model, the limits set on the mixing parameter vertical bar sin theta(R)vertical bar are comparable with the exclusion limits from electroweak precision observables in the mass range between about 900 GeV and 1250 GeV.

  • 131. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ -> 4l and ZZ -> 2l2v final states with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 786, p. 223-244Article in journal (Refereed)
    Abstract [en]

    A measurement of off-shell Higgs boson production in the ZZ -> 4l and ZZ -> 2l2v decay channels, where stands for either an electron or a muon, is performed using data from proton-proton collisions at a centre-of-mass energy of root s = 13 TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of 36.1 fb(-1). An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs production mechanism considered in the analysis, a combination with the on-shell signal-strength measurements yields an observed (expected) 95% CL upper limit on the Higgs boson total width of 14.4 (15.2) MeV.

  • 132. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data2019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14Article in journal (Refereed)
    Abstract [en]

    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.

  • 133. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at s=13 TeV2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 8, article id 639Article in journal (Refereed)
    Abstract [en]

    Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton-proton collision data produced by the LHC at root s = 13 The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z -> ee and J/psi -> eedecays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.

  • 134. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the top quark mass in the t(t)over-bar -> lepton plus jets channel from root s=8 TeV ATLAS data and combination with previous results2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 4Article in journal (Refereed)
    Abstract [en]

    The top quark mass is measured using a template method in the ttlepton+jets channel (lepton is e or ) using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of =8TeV and correspond to an integrated luminosity of 20.2 fb-1. The ttlepton+jets channel is characterized by the presence of a charged lepton, a neutrino and four jets, two of which originate from bottom quarks(b). Exploiting a three-dimensional template technique, the top quark mass is determined together with a global jet energy scale factor and a relative b-to-light-jet energy scale factor. The mass of the top quark is measured to be mtop=172.08 (syst)GeV. A combination with previous ATLAS mtop measurements gives mtop=172.69 +/- 0.25 0.41 (syst) GeV.

  • 135. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Observation of H→bb¯ decays and VH production with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445Article in journal (Refereed)
    Abstract [en]

    A search for the decay of the Standard Model Higgs boson into a bb¯ pair when produced in association with a W or Z boson is performed with the ATLAS detector. The data, corresponding to an integrated luminosity of 79.8fb−1 were collected in proton–proton collisions during Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13TeV. For a Higgs boson mass of 125GeV, an excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.9 (4.3) standard deviations. A combination with the results from other searches in Run 1 and in Run 2 for the Higgs boson in the bb¯ decay mode is performed, which yields an observed (expected) significance of 5.4 (5.5) standard deviations, thus providing direct observation of the Higgs boson decay into b-quarks. The ratio of the measured event yield for a Higgs boson decaying into bb¯ to the Standard Model expectation is 1.01±0.12(stat.)−0.15+0.16(syst.). Additionally, a combination of Run 2 results searching for the Higgs boson produced in association with a vector boson yields an observed (expected) significance of 5.3 (4.8) standard deviations.

  • 136. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Properties of g -> b(b)over-bar at small opening angles in pp collisions with the ATLAS detector at root s=13 TeV2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052004Article in journal (Refereed)
    Abstract [en]

    The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to b-quark pairs is a unique probe into the properties of gluon fragmentation because identified b-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the g -> b (b) over bar process are measured using 33 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-k(t) jet algorithm with radius parameter R = 0.2, are used to probe angular scales below the R = 0.4 jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into b-quarks.

  • 137.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb(-1) of proton-proton collision data at root s=13 Te V2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 9, article id 092007Article in journal (Refereed)
    Abstract [en]

    A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb(-1) of protonproton collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks (R-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived R-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop R-hadrons, as well as staus and charginos of 2000, 1250, 1340, 430, and 1090 GeV, respectively.

  • 138. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy long-lived multicharged particles in proton-proton collisions at root s=13 TeV using the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052003Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived multicharged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb(-1) collected in 2015 and 2016 from proton-proton collisions at root s = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from vertical bar q vertical bar = 2e to vertical bar q vertical bar = 7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multicharged particles with masses between 50 and 980-1220 GeV (depending on their electric charge) are excluded.

  • 139. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Article in journal (Refereed)
    Abstract [en]

    This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton-proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb(-1) are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered.

  • 140.
    Aaboud, M
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 9, article id 092006Article in journal (Refereed)
    Abstract [en]

    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.

  • 141. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for the standard model Higgs boson produced in association with top quarks and decaying into a b(b)overbar pair in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 7, article id 072016Article in journal (Refereed)
    Abstract [en]

    A search for the standard model Higgs boson produced in association with a top-quark pair, t(t)overbarH, is presented. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search targets the H -> b(b)overbar decay mode. The selected events contain either one or two electrons or muons from the top-quark decays, and are then categorized according to the number of jets and how likely these are to contain b-hadrons. Multivariate techniques are used to discriminate between signal and background events, the latter being dominated by ft + jets production. For a Higgs boson mass of 125 GeV, the ratio of the measured t(t)overbarH signal cross-section to the standard model expectation is found to be mu = 0.84(-0.61)(+0.64). A value of mu greater than 2.0 is excluded at 95% confidence level (C.L.) while the expected upper limit is mu < 1.2 in the absence of a t(t)overbarH signal.

  • 142. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Study of the hard double-parton scattering contribution to inclusive four-lepton production in pp collisions at root s=8 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 290, p. 595-614Article in journal (Refereed)
    Abstract [en]

    The inclusive production of four isolated charged leptons in pp collisions is analysed for the presence of hard double-parton scattering, using 20.2 fb(-1) of data recorded in the ATLAS detector at the LHC at centre-of-mass energy root s = 8 TeV. In the four-lepton invariant-mass range of 80 < m(4l) < 1000 GeV, an artificial neural network is used to enhance the separation between single- and double-parton scattering based on the kinematics of the four leptons in the final state. An upper limit on the fraction of events originating from double-parton scattering is determined at 95% confidence level to be f(DPS) = 0.042, which results in an estimated lower limit on the effective cross section at 95% confidence level of 1.0 mb. 

  • 143. Aaboudd, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of tau polarisation in Z/gamma* -> tau tau decays in proton-proton collisions at root s=8 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 2, article id 163Article in journal (Refereed)
    Abstract [en]

    This paper presents a measurement of the polarisation of tau leptons produced in Z/gamma* -> tau tau decays which is performed with a dataset of proton-proton collisions at root s = 8 TeV, corresponding to an integrated luminosity of 20.2 fb(-1) recorded with the ATLAS detector at the LHC in 2012. The Z/gamma* -> tau tau decays are reconstructed from a hadronically decaying tau lepton with a single charged particle in the final state, accompanied by a tau lepton that decays leptonically. The tau polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic tau decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The tau polarisation extracted over the full phase space within the Z/gamma* mass range of 66 < mZ/gamma* < 116GeVis found to be P-tau = -0.14 +/- 0.02(stat)+/- 0.04(syst). It is in agreement with the Standard Model prediction of Pt = -0.1517 +/- 0.0019, which is obtained from the ALP-GEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA tau decay library.

  • 144.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at root s=13 TeV with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 8, article id 666Article in journal (Refereed)
    Abstract [en]

    This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a Z boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb(-1). Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the Z boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underyling event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.

  • 145.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for electroweak diboson production in association with a high-mass dijet system in semileptonic final states in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 3, article id 032007Article in journal (Refereed)
    Abstract [en]

    This paper reports on a search for electroweak diboson (WW/WZ/ZZ) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of N root s = 13 TeV. The data, corresponding to an integrated luminosity of 35.5 fb(-1), were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying W/Z boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of WW/WZ/ZZ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be 45.1 +/- 8.6(stat.)(-14.6)(+15.9)(syst.) fb.

  • 146.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurement of the cross-section and charge asymmetry of W bosons produced in proton-proton collisions at root s=8 TeV with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 9, article id 760Article in journal (Refereed)
    Abstract [en]

    This paper presents measurements of the W+->mu+nu and W-->mu-nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2fb(-1). The precision of the cross-section measurements varies between 0.8 and 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

  • 147.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 22019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, article id P09011Article in journal (Refereed)
    Abstract [en]

    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 mu m.

  • 148.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for high-mass dilepton resonances using 139 fb(-1) of pp collision data collected at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 796, p. 68-87Article in journal (Refereed)
    Abstract [en]

    A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-ofmass energy of root s = 13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb(-1). A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E-6-motivated Z(psi)' boson. Also presented are limits on Heavy Vector Triplet model couplings.

  • 149.
    Balek, Petr
    et al.
    Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, 234 Herzl St, IL-76100 Rehovot, Israel..
    Balek, P.
    Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Charged-hadron suppression in Pb plus Pb and Xe plus Xe collisions measured with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 571-574Article in journal (Refereed)
    Abstract [en]

    The ATLAS detector at the LHC recorded 0.49 nb(-1) of Pb+Pb collisions and 25 of pp(-1) collisions, both at the center-of-mass energy 5.02 TeV per nucleon pair. Recently, ATLAS also recorded 30 mu b(-1) of Xe+Xe collisions at the center-of-mass energy 5.44 TeV, which provides a new opportunity to study the system-size dependence of the charged-hadron production in heavy-ion collisions. The large acceptance of the ATLAS detector allows to measure the spectra of charged hadrons in a wide range of pseudorapidity and transverse momentum. The nuclear modification factors R-AA are constructed as a ratio of the spectra measured in Pb+Pb or Xe+Xe collisions to that measured in pp collisions. The R-AA obtained in the two systems are presented for different centrality intervals and the results are discussed.

  • 150.
    Bold, Tomasz
    et al.
    AGH Univ Sci & Technol, Krakow, Poland..
    Bold, T.
    AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurement of the azimuthal anisotropy of charged particles in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions with ATLAS2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 391-394Article in journal (Refereed)
    Abstract [en]

    The data collected by the ATLAS experiment during the 2015 Pb+Pb and 2017 Xe+Xe LHC runs offer new opportunities to study charged particle azimuthal anisotropy. The high-statistics Pb+Pb sample allows for a detailed study of the azimuthal anisotropy of produced particles. This should improve the understanding of initial conditions of nuclear collisions, hydrodynamical behavior of quark-gluon plasma and parton energy loss. New ATLAS measurements of differential and global Fourier harmonics of charged particles (v(n)) in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions in a wide range of transverse momenta, pseudorapidity (vertical bar eta vertical bar < 2.5) and collision centrality are presented. The higher order harmonics, sensitive to fluctuations in the initial state, are measured up to n = 7 using the two-particle correlation, cumulant and scalar product methods. The dynamic properties of QGP are studied using a recently-proposed modified Pearson's correlation coefficient, rho(v(n)(2), p(T)), between the event-wise mean transverse momentum and the magnitude of the flow vector in 5.02 TeV Pb+Pb and p+Pb collisions. Several important observations are made. The elliptic and triangular flow harmonics show an interesting universal p(T)-scaling. A linear correlation between the v(2) and v(3) coefficients at low and high p(T) ranges is observed and quantified. The correlation coefficient for v(2) is found to be negative in peripheral and positive in central Pb+Pb collisions. The value for v(3) is found to be much smaller than for v(2) and have similar centrality behavior as the v(2).

1234 101 - 150 of 160
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf